Skip to main content

Other Types of Solar Cells Containing Colloidally Prepared Nanocrystals

  • Chapter
  • First Online:
Book cover Solar Cells Based on Colloidal Nanocrystals

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 196))

  • 2845 Accesses

Abstract

Apart from the polymer/nanocrystal hybrid solar cells and solar cells with nanocrystal-based inorganic absorber layers discussed in the previous chapters, there exist a number of other approaches to incorporate colloidally prepared nanocrystals into photovoltaic devices. This chapter discusses selected alternative concepts, where the nanocrystals fulfill quite different functions. One field of research focusses on bulk heterojunction solar cells where the absorber layer is composed of three material components, e.g., conductive polymer, fullerene derivatives, and colloidal nanocrystals. A second topic concerns the usage of colloidal semiconductor nanoparticles with a wide band gap in order to realize solution-producible interlayers in organic solar cells. A third important research field is so-called quantum dot-sensitized solar cells, which are similar to dye-sensitized solar cells with the organic dye replaced by inorganic nanocrystals. Finally, the usage of metal nanoparticles for enhancing light absorption in organic solar cells by the exploitation of plasmonic effects will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldlauf, A.J. Heeger, C.J. Brabec, Adv. Mater. 18, 789 (2006)

    Article  Google Scholar 

  2. T. Ameri, G. Dennler, C. Lungenschmied, C.J. Brabec, Energy Environ. Sci. 2, 347 (2009)

    Article  Google Scholar 

  3. W. Li, A. Furlan, K.H. Hendriks, M.M. Wienk, R.A.J. Janssen, J. Am. Chem. Soc. 135, 5529 (2013)

    Article  Google Scholar 

  4. T. Ameri, P. Khoram, J. Min, C.J. Brabec, Adv. Mater. 25, 4245 (2013)

    Article  Google Scholar 

  5. E.D. Peterson, G.M. Smith, M. Fu, R.D. Adams, R.C. Coffin, D.L. Carroll, Appl. Phys. Lett. 99, 073304 (2011)

    Article  Google Scholar 

  6. H. Fu, M. Choi, W. Luan, Y.-S. Kim, S.-T. Tu, Solid State Electron. 69, 50 (2012)

    Article  Google Scholar 

  7. M. Nam, S. Lee, J. Park, S.-W. Kim, K.-K. Lee, Jpn. J. Appl. Phys. 50, 06GF02 (2011)

    Google Scholar 

  8. W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Adv. Funct. Mater. 15, 1617 (2005)

    Article  Google Scholar 

  9. Y–.Y. Yu, W.-C. Chien, Y.-H. Ko, S.-H. Chen, Thin Solid Films 520, 1503 (2011)

    Article  Google Scholar 

  10. H.-C. Liao, C.-S. Tsao, T.-H. Lin, M.-H. Jao, C.-M. Chuang, S.-Y. Chang, Y.-C. Huang, Y.-T. Shao, C.-Y. Chen, C.-J. Su, U.-S. Jeng, Y.-F. Chen, W.-F. Su, ACS Nano 6, 1657 (2012)

    Article  Google Scholar 

  11. M.S. White, D.C. Olson, S.E. Shaheen, N. Kopidakis, D.S. Ginley, Appl. Phys. Lett. 89, 143517 (2006)

    Article  Google Scholar 

  12. J.Y. Kim, S.H. Kim, H–.H. Lee, K. Lee, W. Ma, X. Gong, A.J. Heeger, Adv. Mater. 18, 572 (2006)

    Article  Google Scholar 

  13. J. Gilot, I. Barbu, M.M. Wienk, R.A.J. Janssen, Appl. Phys. Lett. 91, 113520 (2007)

    Article  Google Scholar 

  14. H. Cheun, C. Fuentes-Hernandez, Y. Zhou, W.J. Potscavage Jr, S.-J. Kim, J. Shim, A. Dindar, B. Kippelen, J. Phys. Chem. C 114, 20713 (2010)

    Article  Google Scholar 

  15. C. Tao, G. Xie, F. Meng, S. Ruan, W. Chen, J. Phys. Chem. C 115, 12611 (2011)

    Article  Google Scholar 

  16. J. Huang, Z. Yin, Q. Zheng, Energy Environ. Sci. 4, 3861 (2011)

    Article  Google Scholar 

  17. E.L. Ratcliff, B. Zacher, N.R. Armstrong, J. Phys. Chem. Lett. 2, 1337 (2011)

    Article  Google Scholar 

  18. A. Bauer, T. Wahl, J. Hanisch, E. Ahlswede, Appl. Phys. Lett. 100, 073307 (2012)

    Article  Google Scholar 

  19. Y. Vaynzof, A.A. Bakulin, S. Gelinas, R.H. Friend, Phys. Rev. Lett. 108, 246605 (2012)

    Article  Google Scholar 

  20. A.C. Arango, L.R. Johnson, V.N. Bliznyuk, Z. Schlesinger, S.A. Carter, H. Hörhold, Adv. Mater. 12, 1689 (2000)

    Article  Google Scholar 

  21. J. Gilot, M.M. Wienk, J.A. Jansen, Appl. Phys. Lett. 90, 143512 (2007)

    Article  Google Scholar 

  22. S. Wilken, D. Scheunemann, V. Wilkens, J. Parisi, H. Borchert, Org. Electron. 13, 2386 (2012)

    Article  Google Scholar 

  23. H. Hoppe, S. Shokhovets, G. Gobsch, Phys. Status Solidi RRL 1, R40 (2007)

    Article  Google Scholar 

  24. R. Häusermann, E. Knapp, M. Moos, N.A. Reinke, T. Flatz, B. Ruhstaller, J. Appl. Phys. 106, 104507 (2009)

    Article  Google Scholar 

  25. M. Grätzel, J. Photochem. Photobiol. C: Photochem. Rev. 4, 145 (2003)

    Article  Google Scholar 

  26. G. Boschloo, A. Hagfeldt, Acc. Chem. Res. 42, 1819 (2009)

    Article  Google Scholar 

  27. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovoltaics Res. Appl. 21, 827 (2013)

    Article  Google Scholar 

  28. G. Liang, Z. Zhong, S. Qu, S. Wang, K. Liu, J. Wang, J. Xu, J. Mater. Sci. 48, 6377 (2013)

    Article  Google Scholar 

  29. J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Energy Environ. Sci. 6, 1739 (2013)

    Article  Google Scholar 

  30. P.V. Kamat, J. Phys. Chem. C 111, 2834 (2007)

    Article  Google Scholar 

  31. I. Mora-Sero, S. Gimenez, F. Fabregat-Santiago, R. Gomez, Q. Shen, T. Toyoda, J. Bisquert, Acc. Chem. Res. 42, 1848 (2009)

    Article  Google Scholar 

  32. S.H. Im, H.-J. Kim, S.W. Kim, S.-W. Kim, S.I. Seok, Energy Environ. Sci. 4, 4181 (2011)

    Article  Google Scholar 

  33. P.K. Santra, P.V. Kamat, J. Am. Chem. Soc. 134, 2508 (2012)

    Article  Google Scholar 

  34. D.R. Baker, P.V. Kamat, Adv. Funct. Mater. 19, 805 (2009)

    Article  Google Scholar 

  35. P.K. Santra, P.V. Nair, K.G. Thomas, P.V. Kamat, J. Phys. Chem. Lett. 4, 722 (2013)

    Article  Google Scholar 

  36. J.A. Chang, J.H. Rhee, S.H. Im, Y.H. Lee, H.-J. Kim, S.I. Seok, M.K. Nazeeruddin, M. Grätzel, Nano Lett. 10, 2609 (2010)

    Article  Google Scholar 

  37. S.H. Im, C.-S. Lim, J.A. Chang, Y.H. Lee, N. Maiti, H.-J. Kim, M.K. Nazeeruddin, M. Grätzel, S.I. Seok, Nano Lett. 11, 4789 (2011)

    Article  Google Scholar 

  38. C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2005)

    Google Scholar 

  39. S. Link, M.A. El-Sayed, J. Phys. Chem. B 103, 4212 (1999)

    Article  Google Scholar 

  40. J.A. Creighton, D.G. Eadon, J. Chem. Soc. Faraday Trans. 87, 3881 (1991)

    Article  Google Scholar 

  41. S. Link, M.A. El-Sayed, J. Phys. Chem. B 103, 8410 (1999)

    Article  Google Scholar 

  42. S.D. Solomon, M. Bahadory, A.V. Jeyarajasingam, S.A. Rutkowsky, C. Boritz, J. Chem. Educ. 84, 322 (2007)

    Article  Google Scholar 

  43. M.M. Alvarez, J.T. Khoury, T.G. Schaaff, M.N. Shafigullin, I. Vezmar, R.L. Whetten, J. Phys. Chem. B 101, 3706 (1997)

    Article  Google Scholar 

  44. C.C.D. Wang, W.C.H. Choy, C. Duan, D.D.S. Fung, W.E.I. Sha, F.-X. Xie, F. Huang, Y. Cao, J. Mater. Chem. 22, 1206 (2012)

    Article  Google Scholar 

  45. K. Kim, D.L. Carroll, Appl. Phys. Lett. 87, 203113 (2005)

    Article  Google Scholar 

  46. K. Topp, H. Borchert, F. Johnen, A.V. Tunc, M. Knipper, E. von Hauff, J. Parisi, K. Al-Shamery, J. Phys. Chem. A 114, 3981 (2010)

    Article  Google Scholar 

  47. Y.-J. Huang, W.-C. Lo, S.-W. Liu, C.-H. Cheng, C.-T. Chen, J.-K. Wang, Sol. Energy Mater. Sol. Cells 116, 153 (2013)

    Article  Google Scholar 

  48. D.H. Wang, D.Y. Kim, K.W. Choi, J.H. Seo, S.H. Im, J.H. Park, O.O. Park, A.J. Heeger, Angew. Chem. Int. Ed. 50, 5519 (2011)

    Article  Google Scholar 

  49. W. Gaynor, J.-Y. Lee, P. Peumans, ACS Nano 4, 30 (2010)

    Article  Google Scholar 

  50. C.J.M. Emmott, A. Urbina, J. Nelson, Sol. Energy Mater. Sol. Cells 97, 14 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Borchert .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Borchert, H. (2014). Other Types of Solar Cells Containing Colloidally Prepared Nanocrystals. In: Solar Cells Based on Colloidal Nanocrystals. Springer Series in Materials Science, vol 196. Springer, Cham. https://doi.org/10.1007/978-3-319-04388-3_14

Download citation

Publish with us

Policies and ethics