Skip to main content

Comment on “The Undeniable Effectiveness of Mathematics in the Special Sciences”

  • Chapter
  • First Online:
New Directions in the Philosophy of Science

Part of the book series: The Philosophy of Science in a European Perspective ((PSEP,volume 5))

  • 1698 Accesses

Abstract

In this paper, I critically discuss two of Mark Colyvan’s case studies. After a short exposition of Colyvan’s program, I first comment on the Lotka-Volterra predator-prey model. I agree with Colyvan’s thesis that mathematical models in population ecology can be explanatory. The historical fathers of mathematical population ecology anticipated this thesis. However, the issue of idealization is not sufficiently emphasized; Volterra’s discussion of the predator-prey model shows that he was acutely aware of the problem of idealization. As to the second case, I point out that the explanation of the structure of the bee’s honeycomb, based on the mathematical honeycomb conjecture, is not a scientific explanation at all.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Volterra (1928) for a historical exposition of the model; the original motivation is mentioned on p. 4, footnote 2.

  2. 2.

    The following discussion of Volterra’s and d’Ancona’s methodological reflections is based on Scholl and Räz (2013, Sect. 3).

  3. 3.

    D’ailleurs s’il apparat trop difficile d’effectuer l’tude quantitative par voie d’exprience et d’obtenir ainsi les lois qui rglent les rapports interspcifiques dans les associations biologiques, on pourra tenter de dcouvrir ces mmes lois par voie dductive et de voir ensuite si elles comportent des rsultats applicables aux cas que prsente l’observation ou l’exprience. (Volterra and D’Ancona 1935, p. 8)

  4. 4.

    D’autre part, il ne faut pas trop se proccuper si on envisage des lments idaux et l’on se place dans des conditions idales qui ne sont pas tout fait ni les lments ni les conditions naturelles. C’est une ncessit et il suffit de rappeler les applications des mathmatiques la mcanique et la physique qui ont amen des rsultats si importants et si utiles mme pratiquement. Dans la mcanique rationnelle et dans la physique mathmatique on envisage en effet les surfaces sans frottement, les fils absolument flexibles et inextensibles, les gaz parfaits, etc. L’exemple de ces sciences est un grand exemple que nous devons avoir toujours prsent l’esprit et que nous devons tcher de suivre. (Volterra and D’Ancona 1935, p. 8)

  5. 5.

    The debate on idealizing models goes at least back to Cartwright (1983). A useful overview of idealization in the context of modeling can be found in Frigg and Hartmann (2012, Sects. 1.1 and 5.1).

  6. 6.

    See e.g. Batterman (2010) for a recent discussion of the distinction between abstraction and idealization.

  7. 7.

    Il est inutile de rappeler qu’en ralit le nombre des individus formant les espces vivant ensemble varie d’une manire discontinue et toujours par nombres entiers. Mais dans l’tude mathmatique il convient de supposer des variations continues afin de pouvoir appliquer les procds du calcul infinitsimal; c’est pourquoi le nombre des individus est considr non pas comme un nombre entier, mais comme un nombre rel et positif quelconque et variant par degrs continus. (Volterra and D’Ancona 1935, p. 14)

  8. 8.

    Pour simplifier le problme on suppose constants ces deux coefficients, alors qu’on sait bien qu’en ralit ils ne le sont jamais, puisque le coefficient de natalit, aussi bien que celui de mortalit, varient avec l’Age de l’individu. On suppose donc que le nombre des naissances et celui des dcs sont proportionnels au nombre total des individus en vie tel moment donn. (Volterra and D’Ancona 1935, p. 16)

  9. 9.

    The explanation was first proposed in Lyon and Colyvan (2008).

  10. 10.

    This section draws on Räz (2013). A detailed account of the objections against the adequacy of the explanation can be found there.

  11. 11.

    This kind of problem was proposed and analyzed in Fejes Tóth (1964).

References

  • Batterman, R.W. 2010. On the explanatory role of mathematics in empirical science. The British Journal for the Philosophy of Science 61: 1–25.

    Article  Google Scholar 

  • Cartwright, N. 1983. How the laws of physics lie. Oxford: Oxford University Press.

    Book  Google Scholar 

  • Fejes Tóth, L. 1964. What the bees know and what they do not know. Bulletin AMS 70: 468–81.

    Article  Google Scholar 

  • Frigg, R., and S. Hartmann. 2012. Models in science. http://plato.stanford.edu/entries/models-science/.

  • Lyon, A., and M. Colyvan. 2008. The explanatory power of phase spaces. Philosophia Mathematica 16(2): 227–243.

    Article  Google Scholar 

  • Räz, T. 2013. On the application of the honeycomb conjecture to the Bee’s honeycomb. Philosophia Mathematica 21: 351–360.

    Article  Google Scholar 

  • Scholl, R., and T. Räz. 2013. Modeling causal structures. European Journal for Philosophy of Science 3(1): 115–132.

    Article  Google Scholar 

  • Volterra, V. 1928. Variations and fluctuations of the number of individuals in animal species living together. Journal du Conseil International pour l’Exploration de la Mer 3(1): 3–51.

    Article  Google Scholar 

  • Volterra, V., and U. D’Ancona. 1935. Les associations biologiques au point de vue mathématique. Paris: Hermann.

    Google Scholar 

Download references

Acknowledgements

I thank Mark Colyvan, Michael Esfeld and Raphael Scholl for useful comments on earlier drafts of this paper. Parts of Sects. 3 and 4 are based on joint work with Raphael Scholl and the paper (Scholl and Räz 2013). This work was supported by the Swiss National Science Foundation, [100018-140201/1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Räz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Räz, T. (2014). Comment on “The Undeniable Effectiveness of Mathematics in the Special Sciences”. In: Galavotti, M., Dieks, D., Gonzalez, W., Hartmann, S., Uebel, T., Weber, M. (eds) New Directions in the Philosophy of Science. The Philosophy of Science in a European Perspective, vol 5. Springer, Cham. https://doi.org/10.1007/978-3-319-04382-1_6

Download citation

Publish with us

Policies and ethics