Advertisement

Novel Pathways to Form Secondary Organic Aerosols: Glyoxal SOA in WRF/Chem

  • Christoph KnoteEmail author
  • Alma Hodzic
  • Jose L. Jimenez
  • Rainer Volkamer
  • John J. Orlando
  • Sunil Baidar
  • Jerome Brioude
  • Jerome Fast
  • Drew R. Gentner
  • Allen H. Goldstein
  • Patrick L. Hayes
  • W. Berk Knighton
  • Hilke Oetjen
  • Ari Setyan
  • Harald Stark
  • Ryan M. Thalman
  • Geoffrey Tyndall
  • Rebecca Washenfelder
  • Eleanor Waxman
  • Qi Zhang
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

Current approaches to simulate secondary organic aerosols (SOA) in regional and global numerical models are based on parameterizations of the oxidation of precursor gases in the gas-phase and subsequent partitioning into particles. Recent findings suggest however that formation in the aqueous-phase of aerosols might contribute substantially to ambient SOA load. In this work we investigate the contribution of glyoxal to SOA through chemical processes associated with aerosols. Both a very simple and a more explicit mechanism of SOA formation from glyoxal was included in the regional chemistry transport model WRF/Chem. We simulated the first 2 weeks of June 2010 over the domain of California to make use of the extensive dataset collected during the CARES/CalNex field campaigns to evaluate our simulations. Contributions to total SOA mass were found to range from 1 to 15 % in the LA basin, and <1 to 9 % in the isoprene-rich eastern slopes of the Central Valley. We find that the simple approach previously used in box as well as global modeling studies gives the highest contributions. A combination of reversible partitioning and volume pathways can provide comparable amounts only if partitioning of glyoxal into the aerosol liquid-phase is instantaneous.

Keywords

Secondary Organic Aerosol Global Forecast System Planetary Boundary Layer Scheme Uptake Coefficient Volume Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Emmons LK, Walters S, Hess PG, Lamarque J-F, Pfister GG, Fillmore D, Granier C, Guenther A, Kinnison D, Laepple T, Orlando JJ, Tie X, Tyndall G, Wiedinmyer C, Baughcum SL, Kloster S (2010) Description and evaluation of the Model for Ozone and Related chemical Tracers, version 4 (MOZART-4). Geosci Model Dev 3:43–67CrossRefGoogle Scholar
  2. 2.
    Ervens B, Turpin BJ, Weber RJ (2011) Secondary organic aerosol formation in cloud droplets and aqueous particles (aqSOA): a review of laboratory, field and model studies. Atmos Chem Phys 11:11069–11102CrossRefGoogle Scholar
  3. 3.
    Ervens B, Volkamer R (2010) Glyoxal processing by aerosol multiphase chemistry: towards a kinetic modeling framework of secondary organic aerosol formation in aqueous particles. Atmos Chem Phys 10:8219–8244CrossRefGoogle Scholar
  4. 4.
    Fu T-M, Jacob DJ, Wittrock F, Burrows JP, Vrekoussis M, Henze DK (2008) Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols. J Geophys Res-Atmos 113:D15303CrossRefGoogle Scholar
  5. 5.
    Grell G, Peckham S, Schmitz R, McKeen S, Frost G, Skamarock W, Eder B (2005) Fully coupled online chemistry within the WRF model. Atmos Environ 39:6957–6975CrossRefGoogle Scholar
  6. 6.
    Hodzic A, Jimenez JL (2011) Modeling anthropogenically controlled secondary organic aerosols in a megacity: a simplified framework for global and climate models. Geosci Model Dev 4:901–917CrossRefGoogle Scholar
  7. 7.
    Kampf CJ, Waxman EM, Slowik JG, Dommen J, Pfaffenberger L, Praplan AP, Prevot ASH, Baltensperger U, Hoffmann T, Volkamer R (2013) Effective Henrys Law partitioning and the salting constant of glyoxal in aerosols containing sulfate. Environ Sci Technol 47:4236–4244CrossRefGoogle Scholar
  8. 8.
    Knote C, Hodzic A, Jimenez JL, Volkamer R, Orlando JJ, Baidar S, Brioude J, Fast J, Gentner DR, Goldstein AH, Hayes PL, Knighton WB, Oetjen H, Setyan A, Stark H, Thalman R, Tyndall G, Washenfelder R, Waxman E, Zhang Q (2013) Simulation of semi-explicit mechanisms of SOA formation from glyoxal in a 3-D model. Atmos Chem Phys Discuss 13:26699–26759CrossRefGoogle Scholar
  9. 9.
    Noziere B, Dziedzic P, Cordova A (2009) Products and kinetics of the liquid-phase reaction of glyoxal catalyzed by ammonium ions (NH4 +). J Phys Chem A 113:231–237CrossRefGoogle Scholar
  10. 10.
    Volkamer R, Martini FS, Molina LT, Salcedo D, Jimenez JL, Molina MJ (2007) A missing sink for gas-phase glyoxal in Mexico City: formation of secondary organic aerosol. Geophys Res Lett 34:L19807CrossRefGoogle Scholar
  11. 11.
    Washenfelder R, Young C, Brown S, Angevine W, Atlas E, Blake D, Bon D, Cubison M, de Gouw J, Dusanter S, Flynn J, Gilman JB, Graus M, Griffith S, Grossberg N, Hayes PL, Jimenez JL, Kuster W, Lefer BL, Pollack I, Ryerson T, Stark H, Stevens PS, Trainer M (2010) The glyoxal budget and its contribution to organic aerosol for Los Angeles, California, during CalNex 2010. J Geophys Res 116:D00V02Google Scholar
  12. 12.
    Waxman EM, Dzepina K, Ervens B, Lee-Taylor J, Aumont B, Jimenez JL, Madronich S, Volkamer R (2013) Secondary organic aerosol formation from semi-and intermediate-volatility organic compounds and glyoxal: relevance of O/C as a tracer for aqueous multiphase chemistry. Geophys Res Lett 40:978–982CrossRefGoogle Scholar
  13. 13.
    Zaveri R, Easter R, Fast J, Peters L (2008) Model for simulating aerosol interactions and chemistry (MOSAIC). J Geophys Res 113:D13204CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Christoph Knote
    • 1
    Email author
  • Alma Hodzic
    • 1
  • Jose L. Jimenez
    • 2
    • 3
  • Rainer Volkamer
    • 2
    • 3
  • John J. Orlando
    • 1
  • Sunil Baidar
    • 2
    • 3
  • Jerome Brioude
    • 3
    • 5
  • Jerome Fast
    • 6
  • Drew R. Gentner
    • 7
  • Allen H. Goldstein
    • 7
    • 8
  • Patrick L. Hayes
    • 2
    • 3
    • 4
  • W. Berk Knighton
    • 9
  • Hilke Oetjen
    • 2
  • Ari Setyan
    • 10
  • Harald Stark
    • 11
    • 3
  • Ryan M. Thalman
    • 2
    • 3
  • Geoffrey Tyndall
    • 1
  • Rebecca Washenfelder
    • 3
    • 5
  • Eleanor Waxman
    • 2
    • 3
  • Qi Zhang
    • 10
  1. 1.Atmospheric Chemistry DivisionNational Center for Atmospheric ResearchBoulderUSA
  2. 2.Department of Chemistry and BiochemistryUniversity of ColoradoBoulderUSA
  3. 3.CIRESUniversity of ColoradoBoulderUSA
  4. 4.Département de ChimieUniversité de MontréalMontréalCanada
  5. 5.Chemical Sciences DivisionNOAA Earth System Research LaboratoryBoulderUSA
  6. 6.Pacific Northwest National LaboratoryRichlandUSA
  7. 7.Department of Civil and Environmental EngineeringUniversity of CaliforniaBerkeleyUSA
  8. 8.Department of Environmental Science, Policy, and ManagementUniversity of CaliforniaBerkeleyUSA
  9. 9.Montana State UniversityBozemanUSA
  10. 10.Department of Environmental ToxicologyUniversity of CaliforniaDavisUSA
  11. 11.Aerodyne Research, Inc.BillericaUSA

Personalised recommendations