Advertisement

Modelling Aerosol-Cloud-Meteorology Interaction: A Case Study with a Fully Coupled Air Quality Model (GEM-MACH)

  • W. GongEmail author
  • P. A. Makar
  • J. Zhang
  • J. Milbrandt
  • S. Gravel
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

A fully coupled on-line air quality forecast model, GEM-MACH, was used to study a case of cloud processing in an urban-industrial plume and aerosol-cloud-meteorology interaction. Preliminary results have shown a significant impact on modelled clouds and particulate sulfate concentrations due to the inclusion of the feedback from on-line aerosols to microphysics. Further tests and detailed comparison with in-situ measurements of this case are underway.

Keywords

Cloud Droplet Model Cloud Liquid Water Content Droplet Nucleation Cloud Liquid Water Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would like to acknowledge Mr. Radenko Pavlovic (AQMAS/ NPOD/MSC) for conducting a series of 12-h cycling runs using the standard operational GEM-MACH to generate chemical initial conditions for this study.

References

  1. 1.
    Abdul-Razzak H, Ghan SJ (2002) A parameterization of aerosol activation. Part 3: Sectional representation. J Geophys Res 107(D3):4026. doi: 10.1029/2001JD000483 CrossRefGoogle Scholar
  2. 2.
    Gong W et al (2013) Impact of aerosol activation on modelled regional particulate matter mass and size distribution due to cloud processing. In: Steyn DG, Timmermans R (eds) Air pollution modelling and its application XXII. Springer, DordrechtGoogle Scholar
  3. 3.
    Hayden KL et al (2008) Cloud processing of nitrate. J Geophys Res 113(D18), D18201CrossRefGoogle Scholar
  4. 4.
    Makar PA et al (2014) A process analysis of the impact of air-quality/weather feedbacks using GEM-MACH. In: Steyn D, Mathur R (eds) Proceedings of the 33rd ITM on air pollution modelling and its application. Springer, DordrechtGoogle Scholar
  5. 5.
    Menard S et al (2014) Current and future developments in numerical air quality forecasting in Canada. In: Steyn D, Mathur R (eds) Proceedings of the 33rd ITM on air pollution modelling and its application. Springer, DordrechtGoogle Scholar
  6. 6.
    Milbrandt JA, Yau MK (2005) A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description. J Atmos Sci 62(9):3065–3081CrossRefGoogle Scholar
  7. 7.
    Moran MD et al (2010) Particulate-matter forecasting with GEM-MACH15, a new Canadian air-quality forecast model. In: Steyn DG, Rao ST (eds) Air pollution modelling and its application XX. Springer, Dordrecht, pp 289–292Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • W. Gong
    • 1
    Email author
  • P. A. Makar
    • 1
  • J. Zhang
    • 1
  • J. Milbrandt
    • 2
  • S. Gravel
    • 3
  1. 1.Air Quality Research DivisionEnvironment CanadaTorontoCanada
  2. 2.Meteorological Research DivisionEnvironment CanadaDorvalCanada
  3. 3.Air Quality Research DivisionEnvironment CanadaDorvalCanada

Personalised recommendations