Advertisement

The Use of a Non Negative Matrix Factorization Method Combined to PM2.5 Chemical Data for a Source Apportionment Study in Different Environments

  • Adib Kfoury
  • Frédéric Ledoux
  • Abdelhakim Limem
  • Gilles Delmaire
  • Gilles Roussel
  • Dominique CourcotEmail author
Conference paper
Part of the Springer Proceedings in Complexity book series (SPCOM)

Abstract

This study revolves around the use of a Non Negative Matrix Factorization method under constraints for the identification sources profiles as well as their respective contributions in three sites in northern France. Using PM2.5 chemical analysis data, the model identified eight background and four local industrial sources profiles. In addition, the contributions of these profiles showed that secondary aerosols and combustion sources are the major constituents of the analyzed PM2.5, whereas industrial contributions were found majorly responsible for the elemental enrichments.

Keywords

Source Contribution Source Apportionment Positive Matrix Factorization Combustion Source Source Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bellis CA, Karagulian F, Larsen BR, Hopke PK (2013) Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos Environ 69:94–108CrossRefGoogle Scholar
  2. 2.
    Delmaire G, Roussel G, Hleis D, Ledoux F (2010) Une version pondérée de la Factorisation Matricielle Non Negative pour l’identification de sources de particules atmosphériques: application au littoral de la Mer du Nord. Journal Européen des Systèmes Automatisés 44(4–5):547–566CrossRefGoogle Scholar
  3. 3.
    Lee DD, Seung HS (1999) Learning the parts objects by non negative matrix factorization. Nature 401(6755):788–791CrossRefGoogle Scholar
  4. 4.
    Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optional utilization of error estimates of data values. Environmentrics 5:111–126CrossRefGoogle Scholar
  5. 5.
    Viana M, Kuhlbusch TAJ, Querol X, Alastuey A, Harrison RM, Hopke PK, Winiwarter W, Vallius M, Szidat S, Prévot ASH, Hueglin C, Bloemen H, Wahlin P, Vecchi R, Miranda AI, Kasper-Giebl A, Maenhaut W, Hitzenberger R (2008) Source apportionment of particulate matter in Europe: a review of methods and results. J Aerosol Sci 39:827–849CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Adib Kfoury
    • 1
    • 2
  • Frédéric Ledoux
    • 1
    • 2
  • Abdelhakim Limem
    • 1
    • 3
  • Gilles Delmaire
    • 1
    • 3
  • Gilles Roussel
    • 1
    • 3
  • Dominique Courcot
    • 1
    • 2
    Email author
  1. 1.Université Lille Nord de FranceLilleFrance
  2. 2.Unité de Chimie Environnementale et Interactions sur le VivantUniversité du Littoral Côte d’Opale, UCEIV EA4492DunkerqueFrance
  3. 3.Laboratoire d’Informatique, Signal et Image de la Côte d’OpaleUniversité du Littoral Côte d’Opale, LISIC EA4491CalaisFrance

Personalised recommendations