Skip to main content

On Lower Bounds for the Time and the Bit Complexity of Some Probabilistic Distributed Graph Algorithms

(Extended Abstract)

  • Conference paper
  • 1350 Accesses

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8327)

Abstract

This paper concerns probabilistic distributed graph algorithms to solve classical graph problems such as colouring, maximal matching or maximal independent set. We consider anonymous networks (no unique identifiers are available) where vertices communicate by single bit messages. We present a general framework, based on coverings, for proving lower bounds for the bit complexity and thus the execution time to solve these problems. In this way we obtain new proofs of some well known results and some new ones.

Keywords

  • Connected Graph
  • Maximal Match
  • Label Graph
  • Port Numbering
  • Election Algorithm

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-04298-5_21
  • Chapter length: 11 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   84.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-04298-5
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   109.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angluin, D.: Local and global properties in networks of processors. In: Proceedings of the 12th Symposium on Theory of Computing, pp. 82–93 (1980)

    Google Scholar 

  2. Bodlaender, H.L., Moran, S., Warmuth, M.K.: The distributed bit complexity of the ring: from the anonymous case to the non-anonymous case. Information and Computation 114(2), 34–50 (1994)

    CrossRef  MathSciNet  Google Scholar 

  3. Bodlaender, H.-L.: The classification of coverings of processor networks. J. Parallel Distrib. Comput. 6, 166–182 (1989)

    CrossRef  Google Scholar 

  4. Boldi, P., Vigna, S.: Fibrations of graphs. Discrete Math. 243, 21–66 (2002)

    CrossRef  MATH  MathSciNet  Google Scholar 

  5. Chalopin, J., Métivier, Y.: An efficient message passing election algorithm based on Mazurkiewicz’s algorithm. Fundam. Inform. 80(1-3), 221–246 (2007)

    MATH  Google Scholar 

  6. Dinitz, Y., Moran, S., Rajsbaum, S.: Bit complexity of breaking and achieving symmetry in chains and rings. Journal of the ACM 55(1) (2008)

    Google Scholar 

  7. Fontaine, A., Métivier, Y., Robson, J.M., Zemmari, A.: The bit complexity of the MIS problem and of the maximal matching problem in anonymous rings. Information and Computation (to appear)

    Google Scholar 

  8. Israeli, A., Itai, A.: A fast and simple randomized parallel algorithm for maximal matching. Information Processing Letters 22, 77–80 (1986)

    CrossRef  MathSciNet  Google Scholar 

  9. Kushilevitz, E., Nisan, N.: Communication complexity. Cambridge University Press (1999)

    Google Scholar 

  10. Kothapalli, K., Onus, M., Scheideler, C., Schindelhauer, C.: Distributed coloring in \({O}(\sqrt{\log n})\) bit rounds. In: Proceedings of the 20th International Parallel and Distributed Processing Symposium (IPDPS 2006), Rhodes Island, Greece, April 25-29. IEEE (2006)

    Google Scholar 

  11. Métivier, Y., Robson, J.M., Saheb-Djahromi, N., Zemmari, A.: About randomised distributed graph colouring and graph partition algorithms. Information and Computation 208(11), 1296–1304 (2010)

    CrossRef  MATH  MathSciNet  Google Scholar 

  12. Métivier, Y., Robson, J.M., Saheb-Djahromi, N., Zemmari, A.: An optimal bit complexity randomized distributed MIS algorithm. Distributed Computing 23(5-6), 331–340 (2011)

    CrossRef  MATH  Google Scholar 

  13. Reidemeister, K.: Einführung in die Kombinatorische Topologie. Vieweg, Brunswick (1932)

    Google Scholar 

  14. Tel, G.: Introduction to distributed algorithms. Cambridge University Press (2000)

    Google Scholar 

  15. Yao, A.C.: Some complexity questions related to distributed computing. In: Proceedings of the 11th ACM Symposium on Theory of Computing (STOC), pp. 209–213. ACM Press (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Fontaine, A., Métivier, Y., Robson, J.M., Zemmari, A. (2014). On Lower Bounds for the Time and the Bit Complexity of Some Probabilistic Distributed Graph Algorithms. In: Geffert, V., Preneel, B., Rovan, B., Štuller, J., Tjoa, A.M. (eds) SOFSEM 2014: Theory and Practice of Computer Science. SOFSEM 2014. Lecture Notes in Computer Science, vol 8327. Springer, Cham. https://doi.org/10.1007/978-3-319-04298-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04298-5_21

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04297-8

  • Online ISBN: 978-3-319-04298-5

  • eBook Packages: Computer ScienceComputer Science (R0)