Skip to main content

An Auto-validating Rejection Sampler for Differentiable Arithmetical Expressions: Posterior Sampling of Phylogenetic Quartets

  • Chapter
Constraint Programming and Decision Making

Part of the book series: Studies in Computational Intelligence ((SCI,volume 539))

  • 1336 Accesses

Abstract

We introduce an efficient extension of a recently introduced auto-validating rejection sampler that is capable of producing independent and identically distributed (IID) samples from a large class of target densities with locally Lipschitz arithmetical expressions. Our extension is restricted to target densities that are differentiable. We use the centered form, as opposed to the natural interval extension, to get tighter range enclosures of the differentiable multivariate target density using interval extended gradient differentiation arithmetic. By using the centered form we are able to sample one hundred times faster from the posterior density over the space of phylogenetic trees with four leaves (quartets).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chor, B., Hendy, M., Holland, B., Penny, D.: Multiple maxima of likelihood in phylogenetic trees: An analytic approach. Mol. Biol. Evol. 17, 1529–1541 (2000)

    Google Scholar 

  2. Evans, W., Kenyon, C., Peres, Y., Schulman, L.J.: Broadcasting on trees and the Ising model. Advances in Applied Probability 10, 410–433 (2000)

    MATH  MathSciNet  Google Scholar 

  3. Felsenstein, J.: Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376 (1981)

    Article  Google Scholar 

  4. Felsenstein, J.: Inferring phylogenies. Sinauer Associates, Sunderland (2003)

    Google Scholar 

  5. Jones, G., Hobert, J.: Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statistical Science 16(4), 312–334 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hofschuster, W., Krämer, W.: C-XSC 2.0 – A C++ library for extended scientific computing. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.) Num. Software with Result Verification. LNCS, vol. 2991, pp. 15–35. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  7. Moore, R.E.: Interval analysis. Prentice-Hall (1967)

    Google Scholar 

  8. Mossel, E., Vigoda, E.: Phylogenetic MCMC algorithms are misleading on mixtures of trees. Science 309, 2207–2209 (2005)

    Article  Google Scholar 

  9. Rall, L.B.: Automatic differentiation, techniques and applications. LNCS, vol. 120. Springer, Heidelberg (1981)

    Book  MATH  Google Scholar 

  10. Ratschek, H.: Centered forms. SIAM Journal on Numerical Analysis 17(5), 656–662 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sainudiin, R., York, T.: Auto-validating von Neumann rejection sampling from small phylogenetic tree spaces. Algorithms for Molecular Biology 4, 1 (2009)

    Article  Google Scholar 

  12. Sainudiin, R., York, T.: An auto-validating, trans-dimensional, universal rejection sampler for locally Lipschitz arithmetical expressions. Reliable Computing 18, 15–54 (2013)

    MathSciNet  Google Scholar 

  13. Schichl, H., Neumaier, A.: Interval analysis on directed acyclic graphs for global optimization. Journal of Global Optimization 33(4), 541–562 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  14. Semple, C., Steel, M.: Phylogenetics. Oxford University Press (2003)

    Google Scholar 

  15. von Neumann, J.: Various techniques used in connection with random digits. In: Von Neumann, J. (ed.) Collected Works, vol. V. Oxford University Press (1963)

    Google Scholar 

  16. Walker, A.J.: An efficient method for generating discrete random variables with general distributions. ACM Trans. Math. Softw. 3, 253–256 (1977)

    Article  MATH  Google Scholar 

  17. Williams, D.: Weighing the Odds: A Course in Probability and Statistics. Cambridge University Press (2001)

    Google Scholar 

  18. Yang, Z.: Complexity of the simplest phylogenetic estimation problem. Proceedings of the Royal Soc. London B Biol. Sci. 267, 109–119 (2000)

    Article  Google Scholar 

  19. Yang, Z.: Computational Molecular Evolution. Oxford University Press, UK (2006)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raazesh Sainudiin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sainudiin, R. (2014). An Auto-validating Rejection Sampler for Differentiable Arithmetical Expressions: Posterior Sampling of Phylogenetic Quartets. In: Ceberio, M., Kreinovich, V. (eds) Constraint Programming and Decision Making. Studies in Computational Intelligence, vol 539. Springer, Cham. https://doi.org/10.1007/978-3-319-04280-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04280-0_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04279-4

  • Online ISBN: 978-3-319-04280-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics