Skip to main content

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 49))

Abstract

This work presents a damage formulation applied to hyperelastic materials in order to capture the Mullins effect, observed in rubber-like materials and biological tissues. A mixed (u/p) formulation with a pressure projection procedure is used with the hp-FEM to overcome the volumetric locking. The isotropic damage model uses a scalar variable that evolves coupled with the maximum attained equivalent strain. This damage variable defines a stress reduction factor, which describes the softening behavior. Cyclic loading tests were performed to reproduce the Mullins effect. Convergence analyses were made for compressible and nearly-incompressible materials imposing smooth solutions. The results presented a spectral convergence rate for the p-refinement. In the case of near-incompressibility, the material showed locking-free characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In practical cases, there are small residual stresses, characterizing hysteresis. However, idealized models do not account for these stresses, as well as temperature and viscosity effects.

  2. 2.

    For compressible materials with damage, the reduction factor \((1-D)\) of Eq. 97 is applied to W, rather than \(\bar{W}\).

References

  1. Babuška, I.: The p and h-p versions of the finite element method: the state of the art. In: Dwoyer, D.L., Hussaini, M.Y., Voigt, R.G. (eds.) Finite Elements, ICASE/NASA LaRC Series, pp. 199–239. Springer, New York (1988)

    Google Scholar 

  2. Bathe, K.J.: Finite Element Procedures. Prentice Hall (1996)

    Google Scholar 

  3. Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley (2000)

    Google Scholar 

  4. Bendre, A.A.: Finite element analysis and preliminary experiments to study the effects of high myopia in macular degeneration. Master’s thesis, Northeastern University (2009)

    Google Scholar 

  5. Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge (1997)

    Google Scholar 

  6. Chagnon, G., Verron, E., Gornet, L., Marckmann, G., Charrier, P.: On the relevance of continuum damage mechanics as applied to the mullins effect in elastomers. J. Mech. Phys. Solids 52, 1627–1650 (2004)

    Article  MATH  Google Scholar 

  7. Chen, J.S., Pan, C.: A pressure projection method for nearly incompressible rubber hyperelasticity, part i: theory. J. Appl. Mech. 63(4), 862–868 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Costa, G.L.V.: hp2fem—a p non-uniform software architecture to the high order finite element method. Master’s thesis, State University of Campinas (2012)

    Google Scholar 

  9. de Souza Neto, E.A., Perić, D., Dutko, M., Owen, D.R.J.: Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int. J. Solids and Struct. 33(20–22), 3277–3296 (1994)

    Google Scholar 

  10. de Souza Neto, E.A., Perić, D., Dutko, M., Owen, D.R.J.: A phenomenological three-dimensional rate-independent continuum damage model for highly filled polymers: formulation and computational aspects. J. Mech. Phys. Solids, 42(10), 1533– 1550 (1994)

    Google Scholar 

  11. Dong, S., Yosibashi, Z.: A parallel spectral element method for dynamic three-dimensional nonlinear elasticity problems. Comput. Struct. 87(1–2), 59–72 (2009)

    Article  Google Scholar 

  12. Fried, I.: Finite element analysis of incompressible material by residual energy balance. Int. J. Solids Struct. 10, 993–1002 (1974)

    Article  MATH  Google Scholar 

  13. Fung, Y-C.: Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. Springer, New York (1993)

    Google Scholar 

  14. Gharti, H.N., Komatitsch, D., Oye, V., Martin, R., Tromp, J.: Application of an elastoplastic spectral-element method to 3d slope stability analysis. Int. J. Numer. Meth. Eng. 91(1), 1–26 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gurtin, M.E., Francis, E.C.: Simple rate-independent model for damage. J. Spacecr. 18(3), 285–286 (1981)

    Article  Google Scholar 

  16. Heisserer, U., Hartmann, S., Düster, A., Yosibash, Z.: On volumetric locking-free behaviour of p-version finite elements under finite deformations. Commun. Numer. Meth. Eng. 24(11) (2007)

    Google Scholar 

  17. Heisserer, U., Hartmann, S., Düster, A., Yosibash, Z., Bier, W., Rank, E.: p-fem for finite deformation powder compaction. Comput. Meth. Appl. Mech. Eng. 197(6–8), 727–740 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley (2000)

    Google Scholar 

  19. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Civil and Mechanical Engineering Series. Dover Publications (2000)

    Google Scholar 

  20. Kachanov, L.M.: Time rupture process under creep conditions. Izv Akad Nauk SSR 8, 26–31 (1958)

    Google Scholar 

  21. Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid Dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2005)

    Book  MATH  Google Scholar 

  22. Konyukhov, A., Schweizerhof, K.: Incorporation of contact for high-order finite elements in covariant form. Comput. Meth. Appl. Mech. Eng. 198(13–14), 1213–1223 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Mullins, L.: Softening of rubber by deformation. Rubb. Chem. Technol. 42(1), 339–351 (1969)

    Article  Google Scholar 

  24. Ogden, R.W.: Non-Linear Elastic Deformations. Dover Civil and Mechanical Engineering Series. Dover Publications (1997)

    Google Scholar 

  25. Power, E.D.: A nonlinear finite element model of the human eye to investigate ocular injuries from night vision goggles. Master’s thesis, Virginia tech, USA (2001)

    Google Scholar 

  26. Simo, J.C.: On a fully 3-dimensional finite strain viscoelastic damage model—formulation and computational aspects. Comput. Meth. Appl. Mech. Eng. 60(2), 153–173 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  27. Souza Neto, E.A., Perić, D., Owen, D.R.J.: Computational Methods for Plasticity: Theory and Applications. Wiley (2008)

    Google Scholar 

  28. Yosibash, Z., Hartmann, S., Heisser, U., Dster, A., Rank, E., Szanto, M.: Axisymmetric preassure boundary loading for finite deformation analysis using p-fem. Comput. Meth. Appl. Mech. Eng. 196(7), 1261–1277 (2007)

    Article  MATH  Google Scholar 

  29. Yu, Y., Baek, H., Bittencourt, M.L., Karniadakis, G.E.: Mixed spectral/hp element formulation for nonlinear elasticity. Comput. Meth. Appl. Mech. Eng. 213–216, 42–57 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco L. Bittencourt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Suzuki, J.L., Bittencourt, M.L. (2016). Application of the hp-FEM for Hyperelastic Problems with Isotropic Damage. In: Muñoz-Rojas, P. (eds) Computational Modeling, Optimization and Manufacturing Simulation of Advanced Engineering Materials. Advanced Structured Materials, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-04265-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04265-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04264-0

  • Online ISBN: 978-3-319-04265-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics