Application of the hp-FEM for Hyperelastic Problems with Isotropic Damage

  • Jorge L. Suzuki
  • Marco L. BittencourtEmail author
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 49)


This work presents a damage formulation applied to hyperelastic materials in order to capture the Mullins effect, observed in rubber-like materials and biological tissues. A mixed (u/p) formulation with a pressure projection procedure is used with the hp-FEM to overcome the volumetric locking. The isotropic damage model uses a scalar variable that evolves coupled with the maximum attained equivalent strain. This damage variable defines a stress reduction factor, which describes the softening behavior. Cyclic loading tests were performed to reproduce the Mullins effect. Convergence analyses were made for compressible and nearly-incompressible materials imposing smooth solutions. The results presented a spectral convergence rate for the p-refinement. In the case of near-incompressibility, the material showed locking-free characteristics.


Volumetric Strain Damage Evolution Maximum Principal Stress Strain Energy Function Hyperelastic Material 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Babuška, I.: The p and h-p versions of the finite element method: the state of the art. In: Dwoyer, D.L., Hussaini, M.Y., Voigt, R.G. (eds.) Finite Elements, ICASE/NASA LaRC Series, pp. 199–239. Springer, New York (1988)Google Scholar
  2. 2.
    Bathe, K.J.: Finite Element Procedures. Prentice Hall (1996)Google Scholar
  3. 3.
    Belytschko, T., Liu, W.K., Moran, B.: Nonlinear Finite Elements for Continua and Structures. Wiley (2000)Google Scholar
  4. 4.
    Bendre, A.A.: Finite element analysis and preliminary experiments to study the effects of high myopia in macular degeneration. Master’s thesis, Northeastern University (2009)Google Scholar
  5. 5.
    Bonet, J., Wood, R.D.: Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge (1997)Google Scholar
  6. 6.
    Chagnon, G., Verron, E., Gornet, L., Marckmann, G., Charrier, P.: On the relevance of continuum damage mechanics as applied to the mullins effect in elastomers. J. Mech. Phys. Solids 52, 1627–1650 (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, J.S., Pan, C.: A pressure projection method for nearly incompressible rubber hyperelasticity, part i: theory. J. Appl. Mech. 63(4), 862–868 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Costa, G.L.V.: hp2fem—a p non-uniform software architecture to the high order finite element method. Master’s thesis, State University of Campinas (2012)Google Scholar
  9. 9.
    de Souza Neto, E.A., Perić, D., Dutko, M., Owen, D.R.J.: Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int. J. Solids and Struct. 33(20–22), 3277–3296 (1994)Google Scholar
  10. 10.
    de Souza Neto, E.A., Perić, D., Dutko, M., Owen, D.R.J.: A phenomenological three-dimensional rate-independent continuum damage model for highly filled polymers: formulation and computational aspects. J. Mech. Phys. Solids, 42(10), 1533– 1550 (1994)Google Scholar
  11. 11.
    Dong, S., Yosibashi, Z.: A parallel spectral element method for dynamic three-dimensional nonlinear elasticity problems. Comput. Struct. 87(1–2), 59–72 (2009)CrossRefGoogle Scholar
  12. 12.
    Fried, I.: Finite element analysis of incompressible material by residual energy balance. Int. J. Solids Struct. 10, 993–1002 (1974)CrossRefzbMATHGoogle Scholar
  13. 13.
    Fung, Y-C.: Biomechanics: Mechanical Properties of Living Tissues, 2nd edn. Springer, New York (1993)Google Scholar
  14. 14.
    Gharti, H.N., Komatitsch, D., Oye, V., Martin, R., Tromp, J.: Application of an elastoplastic spectral-element method to 3d slope stability analysis. Int. J. Numer. Meth. Eng. 91(1), 1–26 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gurtin, M.E., Francis, E.C.: Simple rate-independent model for damage. J. Spacecr. 18(3), 285–286 (1981)CrossRefGoogle Scholar
  16. 16.
    Heisserer, U., Hartmann, S., Düster, A., Yosibash, Z.: On volumetric locking-free behaviour of p-version finite elements under finite deformations. Commun. Numer. Meth. Eng. 24(11) (2007)Google Scholar
  17. 17.
    Heisserer, U., Hartmann, S., Düster, A., Yosibash, Z., Bier, W., Rank, E.: p-fem for finite deformation powder compaction. Comput. Meth. Appl. Mech. Eng. 197(6–8), 727–740 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Holzapfel, G.A.: Nonlinear Solid Mechanics: A Continuum Approach for Engineering. Wiley (2000)Google Scholar
  19. 19.
    Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover Civil and Mechanical Engineering Series. Dover Publications (2000)Google Scholar
  20. 20.
    Kachanov, L.M.: Time rupture process under creep conditions. Izv Akad Nauk SSR 8, 26–31 (1958)Google Scholar
  21. 21.
    Karniadakis, G.E., Sherwin, S.J.: Spectral/hp Element Methods for Computational Fluid Dynamics. Numerical Mathematics and Scientific Computation. Oxford University Press, Oxford (2005)CrossRefzbMATHGoogle Scholar
  22. 22.
    Konyukhov, A., Schweizerhof, K.: Incorporation of contact for high-order finite elements in covariant form. Comput. Meth. Appl. Mech. Eng. 198(13–14), 1213–1223 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Mullins, L.: Softening of rubber by deformation. Rubb. Chem. Technol. 42(1), 339–351 (1969)CrossRefGoogle Scholar
  24. 24.
    Ogden, R.W.: Non-Linear Elastic Deformations. Dover Civil and Mechanical Engineering Series. Dover Publications (1997)Google Scholar
  25. 25.
    Power, E.D.: A nonlinear finite element model of the human eye to investigate ocular injuries from night vision goggles. Master’s thesis, Virginia tech, USA (2001)Google Scholar
  26. 26.
    Simo, J.C.: On a fully 3-dimensional finite strain viscoelastic damage model—formulation and computational aspects. Comput. Meth. Appl. Mech. Eng. 60(2), 153–173 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Souza Neto, E.A., Perić, D., Owen, D.R.J.: Computational Methods for Plasticity: Theory and Applications. Wiley (2008)Google Scholar
  28. 28.
    Yosibash, Z., Hartmann, S., Heisser, U., Dster, A., Rank, E., Szanto, M.: Axisymmetric preassure boundary loading for finite deformation analysis using p-fem. Comput. Meth. Appl. Mech. Eng. 196(7), 1261–1277 (2007)CrossRefzbMATHGoogle Scholar
  29. 29.
    Yu, Y., Baek, H., Bittencourt, M.L., Karniadakis, G.E.: Mixed spectral/hp element formulation for nonlinear elasticity. Comput. Meth. Appl. Mech. Eng. 213–216, 42–57 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.University of Campinas, Cidade Universitária Zeferino VazCampinasBrazil

Personalised recommendations