Modeling Material Behavior of Polymers

  • Maria Anna PolakEmail author
  • Hossein Sepiani
  • Alexander Penlidis
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 49)


Polymers are widely used in the automotive, aerospace and computer industries, building trades and many other applications. Many researchers have worked on the investigation and analysis of polymers’ properties and behavior. The present chapter is devoted to polymer material research including testing and modeling. First, an introductory discussion on types of polymers and their tensile and compressive behavior and mechanical properties is provided. Experimental results show a high degree of nonlinearity in polyethylene behavior, which requires modeling based on coupled non-separable formulation. Representations of viscoelastic and viscoplastic models for linear and nonlinear behaviors are presented based on differential formulation. Finally, comparisons are made between the test data and the presented theory for the loading cases of short term, long term and step loadings.


Creep Test Creep Strain Creep Behavior Relaxation Modulus Creep Compliance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Alvarado-Contreras, J., Polak, M.A. Penlidis, A.: computational study on a damage-coupled model for crystalline polyethylene. Eng. Comput. 25, 612–636 (2008)Google Scholar
  2. 2.
    Alvarado-Contreras, J., Polak, M.A., Penlidis, A.: Micromechanical approach to modeling damage in crystalline polyethylene. Polym. Eng. Sci. 47, 410–420 (2007)Google Scholar
  3. 3.
    Barbero, E.J.: Time–temperature–age superposition principle for predicting long-term response of linear viscoelastic materials. Creep Fatigue Polym. Matrix Compos. 48–69 (2011)Google Scholar
  4. 4.
    Behjat, Y., et al.: Influence of micromolecular structure on environmental stress cracking resistance of high density polyethylene. ASCE J. Mater. Civil Eng. (2014)Google Scholar
  5. 5.
    Behjat, Y.: Relationship between Short-Term and Long-Term Creep, and the Molecular Structure of Polyethylene, p. 73. M.A.Sc. thesis, University of Waterloo, Waterloo, ON (2009)Google Scholar
  6. 6.
    Bodner, S.R., Partom, Y.: A largs deformation elastic-viscoplastic analysis of a thick-walled spherical shell. J. Appl. Mech. 751–757 (1972)Google Scholar
  7. 7.
    Bodner, S.R., Partom, Y.: Constitutive equations for elastic-viscoplastic strain-hardening materials. J. Appl. Mech. 385–389 (1975)Google Scholar
  8. 8.
    Bodner, S.R.: Review of a unifiid elastic-viscoplastic theory. AFOSR-84-004 (1984)Google Scholar
  9. 9.
    Brinson Hall, F., Brinson Catherine, L.: Polymer Engineering Science and Viscoelasticity, An Introduction. Springer Science, New York (2008)Google Scholar
  10. 10.
    Budianski, B.: Micromechanics. Comput. Struct. 16, 3–12 (1983)Google Scholar
  11. 11.
    Cernocky, E.P., Krempl, E.A.: Theory of viscoplasticity based on infinitesimal total strain. Aeta Meehanica. 36, 263–289 (1980)Google Scholar
  12. 12.
    Charbonneau, L.: Tensile Time-Dependent Tensile Properties of ETFE Foils. Department of Civil Engineering, University of Waterloo, Waterloo, ON (2011)Google Scholar
  13. 13.
    Charbonneau, L., Polak, M.A., Penlidis, A.: Mechanical properties of ETFE foils, testing and modelling, construction and building materials. Constr. Build. Mater. 60, 63–72 (2014)Google Scholar
  14. 14.
    Cheng, J.J.: Mechanical and Chemical Properties of High Density Polyethylene: Effects of Microstructure on Creep Characteristics. Ph.D. thesis, University of Waterloo, Waterloo, ON (2008)Google Scholar
  15. 15.
    Cheng, J.J., Polak, M.A., Penlidis, A.: Phase interconnectivity and environmental stress cracking resistance of polyethylene: a crystalline phase investigation. J. Macromol. Sci. Pure Appl. Chem. 46(6), 572–583 (2009)Google Scholar
  16. 16.
    Cheng, J.J., Polak, M.A., Penlidis, A.: Polymer network mobility and environmental stress cracking resistance of high density polyethylene. Polym. Plast. Technol. Eng. 48(12), 1252–1261 (2009)Google Scholar
  17. 17.
    Cheng, J.J., Polak, M.A., Penlidis, A.: An alternative approach to estimating parameters in creep models of high-density polyethylene. Polym. Eng. Sci. 51, 1227–1235 (2011)Google Scholar
  18. 18.
    Cheng J.J., Polak M.A., Penlidis, A.: A tensile strain hardening test indicator of environmental stress cracking resistance. J. Macromol. Sci. Part A: Pure Appl. Chem. 45, 599–611 (2008)Google Scholar
  19. 19.
    Christensen, R.M.: Theory of Viscoelasticity. Academic Press, [s.l.] (1971)Google Scholar
  20. 20.
    Cowking, A., et al.: A study on the orientation effects in polyethylene in the light of crystalline texture: part 3. J. Mater. Sci. 3, 646–654 (1968)Google Scholar
  21. 21.
    Denby, E.F.: A note on the interconversion of creep, relaxation and recovery. Rheol. Acta. 14, 591–593 (1975)Google Scholar
  22. 22.
    Drozdov, A.D., Christansen, J.D.: Constitutive equations for the nonlinear viscoelastic and viscoplastic behavior of thermoplastic elastomers. Int. J. Eng. Sci. 44, 205–226 (2006)Google Scholar
  23. 23.
    Drozdov, A.D., Christansen, J.D.: Modelling the viscoplastic response of polyethylene in uniaxial loading–unloading tests. Mech. Res. Commun. 30, 431–442 (2003)Google Scholar
  24. 24.
    Drozdov A.D.: A model for the nonlinear viscoelastic response in polymers at finite strains. lnt. J. Solids Struct. 35(18), 2315–2347 (1998)Google Scholar
  25. 25.
    Drozdov A.D.: A new model for an aging thermoviscoelastic material. Mech. Res. Commun. 22(5), 441–446 (1995)Google Scholar
  26. 26.
    Drozdov A.D., Kalamkarov, A.L.: A constitutive model for nonlinear viscoelastic behavior of polymers. Polym. Eng. Sci. 36(14) (1996)Google Scholar
  27. 27.
    Drozdov A.D.: Constitutive equations in finite elasticity of rubbers. Int. J. Solids Struct. 44, 272–297 (2007)Google Scholar
  28. 28.
    Drozdov A.D.: Constitutive model of a viscoelastic material at finite strains. Mech. Res. Commun. 19(6), 535–540 (1992)Google Scholar
  29. 29.
    Ferry, J.D.: Viscoelastic Properties of Polymers. New York, JW (1980)Google Scholar
  30. 30.
    Findley, W.N., Lai, J.S., and Onaran, K.: Creep and Relaxation of Nonlinear Viscoelastic Materials. North-Holland Publishing, 18 (1976)Google Scholar
  31. 31.
    Flugge, W.: Viscoelasticity. Blaisdell Publishing Company, [s.1] (1967)Google Scholar
  32. 32.
    G’Sell, C., Hiver, J.M., Dahoun, A.: Experimental characterization of deformation damage in solid polymers under tension, and its interrelation with necking. Int. J. Solids Struct. 39, 3857–3872 (2002)Google Scholar
  33. 33.
    G’Sell, C., Dahoun, A.: Evolution of microstructure in semi-crystalline polymer under large plastic deformation. Mater. Sci. Eng. A. 175, 183–199 (1994)Google Scholar
  34. 34.
    Hughes, T.J.R., Taylor, R.L.: Unconditionally stable algorithms for quasi-static elasto-visco-plastic finite element analysis. Comput. Struct. 8, 169 (1978)Google Scholar
  35. 35.
    Krishnaswamy, P., Tuttle, M.E., Emery, A.F.: Finite element modelling of crack tip behaviour in viscoelastic materials. Part I: linear behaviour. Int. J. Numer. Methods Eng. 30, 371–387 (1990)Google Scholar
  36. 36.
    Krishnaswamy, P., Tuttle, M.E., Emery, A.F.: Finite element modeling of the time-dependent behavior of nonlinear ductile polymers. Polym. Eng. Sci. 32(16), 1086–1096 (1992)Google Scholar
  37. 37.
    Leaderman, H.: Elastic and Creep Properties of Filamentous Materials and Other High Polymers. The Textile Foundation, Washington (1943)Google Scholar
  38. 38.
    Lin, L., Argon, A.S.: Review: structure and plastic deformation of polyethylene. J. Mater. Sci. 29, 294–323 (1994)Google Scholar
  39. 39.
    Liu, H.: Material Modelling for Structural Analysis of Polyethylene. M.A.Sc thesis, Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, [s.n.] (2007)Google Scholar
  40. 40.
    Liu, H., Polak, M.A., Penlidis, A.: A practical approach to modeling time-dependant nonlinear creep behavior of polyethylene for structural applications. Polym. Eng. Sci. 48(1), 159–167 (2008)Google Scholar
  41. 41.
    Liu, M.C.M., Krempl, E.: A uniaxial viscoplastic model based on total strain and overstress. J. Mech. Phys. Solids 27(5), 377–391 (1979)Google Scholar
  42. 42.
    Lockett, F.J.: Nonlinear Viscoelastic Solids. Academic Press, New York (1972)Google Scholar
  43. 43.
    Luo, W., et al.: Long-term creep assessment of viscoelastic polymer by time-temperature-stress superposition. Acta Mechanica Solida Sinica. 25(6), 571–578 (2012)Google Scholar
  44. 44.
    Nikolov, S., Doghri, I.: A micro/macro constitutive model for the small-deformation behavior of polyethylene. Polymer. 41, 1883–1891 (2000)Google Scholar
  45. 45.
    Nikolov, S., et al.: Multi-scale constitutive modeling of the small deformations of semi-crystalline polymers. J. Mech. Phys. Solids. 50, 2275–2302 (2002)Google Scholar
  46. 46.
    Park, S.W., Kim, Y.R.: Interconversion between relaxation modulus and creep compliance for viscoelastic solids. J. Mater. Civil Eng. 76–82 (1999)Google Scholar
  47. 47.
    Sardashti, P., et al.: Effect of temperature on environmental stress cracking resistance and crystal structure of polyethylene. J. Macromol. Sci. Pure Appl. Chem. [s.l.] 51(3), 1–14, (2014)Google Scholar
  48. 48.
    Sardashti, P., et al.: Improvement of hardening stiffness test as an indicator of environmental stress cracking resistance of polyethylene.J. Macromol. Sci. [s.l.] 49(9), 689–698, (2012)Google Scholar
  49. 49.
    Schrauwen, B.A.G.: Deformation and Failure of Semicrystalline Polymer Systems: Influence of Micro and Molecular Structure. Ph.D. dissertation, [s.l.], Eindhoven University of Technology, (2003)Google Scholar
  50. 50.
    Zhang, C., Moore, I.D.: Nonlinear mechanical response of high density polyethylene. Part I: experimental investigation and model evaluation. Polym. Eng. Sci. 37(2), 404–413 (1997)Google Scholar
  51. 51.
    Zhang, C., Moore, I.D.: Nonlinear mechanical response of high density polyethylene. Part II: uniaxial constitutive modeling. Polym. Eng. Sci. 37(2), 414–420 (1997)Google Scholar
  52. 52.
    Zienkiewicz, O.C.: The Finite Element Method. McGraw Hill, London (1977)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Maria Anna Polak
    • 1
    Email author
  • Hossein Sepiani
    • 1
  • Alexander Penlidis
    • 2
  1. 1.Department of Civil and Environmental EngineeringUniversity of WaterlooWaterlooCanada
  2. 2.Department of Chemical EngineeringInstitute for Polymer Research (IPR), University of WaterlooWaterlooCanada

Personalised recommendations