Skip to main content

Metallic Foam Density Distribution Optimization Using Genetic Algorithms and Voronoi Tessellation

  • Chapter
  • First Online:
Book cover Computational Modeling, Optimization and Manufacturing Simulation of Advanced Engineering Materials

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 49))

  • 1008 Accesses

Abstract

Metallic foams have a very particular structure due to their high specific stiffness. Density plays an important role on their structural response and is also determinant to the foam’s weight. The main goal of this paper is to find an ideal density distribution to open-cell metallic foams in order to achieve optimized structural performance. A density distribution optimization using an irregular description of the foam by a Voronoi tessellation and a genetic algorithm for the numerical optimization is presented in this work. The structural analysis is performed with linear elastic beam finite elements and the foam structure is modeled as a Voronoi tessellation. The density is related to the number of Voronoi seeds, which may configure lighter or denser foams and vary throughout the model. The minimization and maximization of stiffness were analyzed for different structural applications in order to demonstrate the capability of the developed methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bendsøe, M.P.: Optimization of Structural Topology, Shape and Material. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  2. Bendsøe, M.P., Díaz, A.R., Lipton, R., Taylor, J.E.: Optimal design of material properties and material distribution for multiple loading conditions. Int. J. Numer. Meth. Eng. 38, 1149–1170 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bruns, T.E., Tortorelli, D.A.: Topology optimization of geometrically nonlinear structures and compliant mechanisms. In: Proceedings of the 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization. St. Louis, USA, pp. 1874–1882 (1998)

    Google Scholar 

  4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry. Springer 1997

    Google Scholar 

  5. Dementjev, A.G., Tarakanov, O.G.: Influence of the cellular structure of foams on their mechanical properties. Mech. Polym. vol. 4, pp. 594–602 (1970a) (in Russian)

    Google Scholar 

  6. Dimčić, M.: Structural optimization of grid shells based on genetic algorithms. Ph.D. thesis, Institut für Tragkonstruktionen und Konstruktives Entwerten der Universität Suttgart (2011)

    Google Scholar 

  7. Mezura-Montes, E.: Constraint-Handling in Evolutionary Optimization. Springer, Berlin (2009)

    Book  Google Scholar 

  8. Galapagos: Evolutionary Solver. http://www.grasshopper3d.com/group/galapagos (2013)

  9. Gibson, L.J., Ashby, M.F.: Cellular Solids: Structure and Properties. Pergamon Press, Oxford, UK (1988)

    MATH  Google Scholar 

  10. Grasshopper: Generative Modeling of Rhino. http://www.grasshopper3d.com/ (2013)

  11. Karamba: User Manual: Parametric Structural Modeling. Vienna (2012)

    Google Scholar 

  12. Lemonge, A.C.C., Barbosa, H.J.C.: An adaptive penalty scheme for genetic algorithms in structural optimization. Int. J. Numer. Methods Eng. 59, 703–736 (2004)

    Article  MATH  Google Scholar 

  13. Linn, R.V., Oliveira, B.F.: Finite element simulation of compression behavior of cellular. In: Proceedings of the CILAMCE 2008—XXIX Iberian-Latin American Congress on Computational Methods in Engineering (2008)

    Google Scholar 

  14. Lipka, A., Ramm, A.L.E.: A concept for the optimization of structures with foam core. In: Proceedings of the 6th World Congresses of Structural and Multidisciplinary Optimization. Rio de Janeiro (2005)

    Google Scholar 

  15. Nanakorn, P., Meesomklin, K.: An adaptive penalty function in genetic algorithms for structural design optimization. Comput. Struct. 79(29–30), 2527–2539 (2001)

    Article  Google Scholar 

  16. Öchsner, A., Lamprecht, K.: On the uniaxial compression behavior of regular shaped cellular metals. Mech. Res. Commun. 30, 573–579 (2003)

    Article  MATH  Google Scholar 

  17. Oliveira, B.F., Cunda, L.A.B., Öchsner, A., Creus, G.J.: Gurson Damage Model: applications to case studies. In: Proceedings of the CILAMCE 2006—XXVII Iberian-Latin American Congress on Computational Methods in Engineering (2006)

    Google Scholar 

  18. Oliveira, B.F., Cunda, L.A.B., Öchsner, A., Creus, G.J.: Finite element simulation of compression tests on cellular metals. In: Proceedings of the CILAMCE 2007—XXVIII Iberian-Latin American Congress on Computational Methods in Engineering (2007)

    Google Scholar 

  19. Oliveira, B.F., Cunda, L.A.B., Öchsner, A., Creus, G.J.: Comparison between RVE and full mesh approaches for the simulation of compression tests on cellular metals. Materialwiss. Werkstofftech. 39(2), 133–138 (2008)

    Article  Google Scholar 

  20. Powell, D., Skolnick, M.: Using genetic algorithms in engineering design optimization with non-linear constraints. In: Proceeding of the 5th International Conference on Genetic Algorithms. Morgan Kaufmann Publishers (1993)

    Google Scholar 

  21. Rhinoceros: User Manual, version 5.0 (2013)

    Google Scholar 

  22. Ribeiro-Ayeh, S.: Finite element modelling of the mechanics of solid foam materials. Ph.D. thesis, Stockolm, Sweden (2005)

    Google Scholar 

  23. Shulmeister, V.: Modelling of the mechanical properties of low-density foams. Ph.D. thesis, Delf University of Technology (1998)

    Google Scholar 

  24. Van Der Burg, M.W.D., Shulmeister, V., Van Der Geissen, E., Marissen, R.: On the linear elastic properties of regular and random open-cell foam models. J. Cell. Plast. 33(1), 31–54 (1997)

    Google Scholar 

Download references

Acknowledgments

We thank CNPq, CAPES, FAPERGS, CESUP, and PROPESQ/UFRGS for continuous support of our research projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo C. Resende .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Resende, P.C., Linn, R.V., de Oliveira, B.F. (2016). Metallic Foam Density Distribution Optimization Using Genetic Algorithms and Voronoi Tessellation. In: Muñoz-Rojas, P. (eds) Computational Modeling, Optimization and Manufacturing Simulation of Advanced Engineering Materials. Advanced Structured Materials, vol 49. Springer, Cham. https://doi.org/10.1007/978-3-319-04265-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04265-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04264-0

  • Online ISBN: 978-3-319-04265-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics