Fundamental Concepts

  • Daniel Fasel
Part of the Fuzzy Management Methods book series (FMM)


Data warehouse was first discussed by Devlin and Murphy in 1988 [DM88]. They described a read-only database for integration of historical operation data and propose tools for user interaction with this database for decision support and analysis. However, Inmon’s definition has received the most attention over the years. According to Inmon [Inm05], “a data warehouse is a subject oriented, non volatile, integrated and time variant collection of data in favor of decision making”.


  1. [AAG+96]
    S. Agrawal, R. Agrawal, E.A. Gupta, J.F. Naughton, R. Ramakrishnan, S. Sarawagi, On the computation of multidimensional aggregates, in Proceedings of the 22th International Conference on Very Large Data Bases, Hong Kong (Morgan Kaufmann, 1996), pp. 506–521Google Scholar
  2. [AGS95]
    R. Agrawal, A. Gupta, S. Sarawagi, Modeling multidimensional databases, research report. Technical report, IBM Almaden Research Center, San Jose, 1995Google Scholar
  3. [AGS97]
    R. Agrawal, A. Gupta, S. Sarawagi, Modeling multidimensional databases, in Proceedings of the Thirteenth International Conference on Data Engineering, Birmingham (IEEE Computer Society, 1997), pp. 232–243Google Scholar
  4. [AK03]
    R. Alhajj, M. Kaya, Integrating fuzziness into OLAP for multidimensional fuzzy association rules mining, in Proceedings of the Third IEEE International Conference on Data Mining, Melbourne, 2003Google Scholar
  5. [Als85]
    C. Alsina, On a family of connectives for fuzzy sets. Fuzzy Sets Syst. 16(3), 231–235 (1985)CrossRefGoogle Scholar
  6. [Ass11]
    Web Analytics Association,, Nov 2011
  7. [BDJ+05]
    D. Burdick, P.M. Deshpande, T.S. Jayram, R. Ramakrishnan, S. Vaithyanathan, OLAP over uncertain and imprecise data, in Proceedings of the 31st International Conference on Very Large Data Bases, Trondheim, 2005, pp. 970–981Google Scholar
  8. [CCS93]
    E.F. Codd, S.B. Codd, C.T. Smalley, Providing OLAP to User-Analysts: An IT Mandate, Technical report, Codd & Associates, 1993Google Scholar
  9. [CD97]
    S. Chaudhuri, U. Dayal, An overview of data warehousing and OLAP technology. ACM SIGMOD Rec. 26(1), 65–74 (1997)CrossRefGoogle Scholar
  10. [Che76]
    P.P. Chen, The entity-relationship model towards unified view of data. ACM Trans. Database Syst. (TODS) 1, 9–36 (1976)CrossRefGoogle Scholar
  11. [Cod70]
    E.F. Codd, A relational model for large shared data banks. Commun. ACM 13(6), 377–387 (1970)CrossRefGoogle Scholar
  12. [Cod71]
    E.F. Codd, Further normalization of the database relational model, in Database Systems Courant Computer Science Symposium, vol. 6, ed. by R. Rustin (Prentice-Hall, Englewood Cliffs, 1971)Google Scholar
  13. [Cod87]
    E.F. Codd, More commentary on missing information in relational databases (applicable and inapplicable information). ACM SIGMOD Rec. 16, 42–50 (1987)CrossRefGoogle Scholar
  14. [CS94]
    S. Chaudhuri, K. Shim, Including group-by in query optimization, in Proceedings of the International Conference on Very Large Data Bases, Santiago (IEEE, 1994), pp. 354–366Google Scholar
  15. [CS96]
    S. Chaudhuri, K. Shim, Optimizing queries with aggregate views, in Proceedings of the 5th International Conference on Extending Database Technology: Advances in Database Technology, Avignon (Springer, 1996), pp. 167–182Google Scholar
  16. [CS99]
    P. Chamoni, S. Stock, Temporal structures in data warehousing, in Data Warehousing and Knowledge Discovery. Lecture Notes in Computer Science, vol. 1676, ed. by M. Mohania, A.M. Tjoa (Springer, Berlin/Heidelberg, 1999), pp. 353–358Google Scholar
  17. [DM88]
    B.A. Devlin, P.T. Murphy, An architecture for a business and information system. IBM Syst. J. 27(1), 60–80 (1988)CrossRefGoogle Scholar
  18. [DMS+04]
    M. Delgado, C. Molina, D. Sanchez, A. Vila, L. Rodriguez-Ariza, A fuzzy multidimensional model for supporting imprecision in OLAP, in IEEE International Conference on Fuzzy Systems, Budapest, vol. 3 (IEEE, 2004), pp. 1331–1336Google Scholar
  19. [DP80]
    D. Dubois, H.M. Prade, Fuzzy Sets and Systems: Theory and Applications, vol. 144 (Academic, New York, 1980)Google Scholar
  20. [DP85]
    D. Dubois, H.M. Prade, A review of fuzzy set aggregation connectives. Inf. Sci. 36(1–2), 85–121 (1985)CrossRefGoogle Scholar
  21. [Eck95]
    W.W. Eckerson, Three tier client/server architectures: achieving scalability, performance, and efficiency in client/server applications. Open Inf. Syst. 10(1), 3–20 (1995)Google Scholar
  22. [Ede01]
    J. Eder, C. Koncilia, Changes of dimension data in temporal data warehouses, in Data Warehousing and Knowledge Discovery (Springer, Heidelberg, 2001), pp. 284–293CrossRefGoogle Scholar
  23. [Fas09]
    D. Fasel, A fuzzy data warehouse approach for the customer performance measurement for a hearing instrument manufacturing company, in Proceedings of Fuzzy Systems and Knowledge Discovery, Tianjin (IEEE Explore, 2009)Google Scholar
  24. [FD03]
    L. Feng, T.S. Dillon, Using fuzzy linguistic representations to provide explanatory semantics for data warehouses. IEEE Trans. Knowl. Data Eng. 15(1), 86–102 (2003)CrossRefGoogle Scholar
  25. [FS10]
    D. Fasel, K. Shahzad, A data warehouse model for integrating fuzzy concepts in meta table structures, in 17th IEEE International Conference and Workshops on the Engineering of Computer-Based Systems, Oxford (IEEE Computer Society, 2010), pp. 100–109Google Scholar
  26. [FS12]
    D. Fasel, K. Shahzad, Fuzzy data warehouse for performance analysis, in Fuzzy Methods for Customer Relationship Management and Marketing: Applications and Classifications, ed. by A. Meier, L. Donzé (IGP Global, Hershey, 2012), pp. 217–251CrossRefGoogle Scholar
  27. [FZ09]
    D. Fasel, D. Zumstein, A fuzzy data warehouse approach for web analytics, in Visioning and Engineering the Knowledge Society – A Web Science Perspective, ed. by M.D. Lytras, E. Damiani, J.M. Carroll, R.D. Tennyson, D. Avison, A. Naeve, A. Dale, P. Lefrere, F. Tan, J. Sipior, G. Vossen. Volume 5736 of Lecture Notes in Computer Science (Springer, Berlin, 2009), pp. 276–285Google Scholar
  28. [GbGA06]
    J. Gethland, B. Galbraith, D. Almaer, Pragmatic Ajax – A Web 2.0 Primer (The Pragmatic Bookshelf, Raleigh, 2006)Google Scholar
  29. [GCB+97]
    J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, H. Pirahesh, Data cube: a relational aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Min. Knowl. Discov. 1(1), 29–53 (1997)CrossRefGoogle Scholar
  30. [Gil76]
    R. Giles, Lukasiewicz logic and fuzzy set theory+. Int. J. Man-Machine Stud. 8(3), 313–327 (1976)CrossRefGoogle Scholar
  31. [Gon09]
    A. Goncalves, Beginning Java EE 6 Platform with GlassFish 3 (Apress, New York, 2009)CrossRefGoogle Scholar
  32. [GUP04]
    J. Galindo, A. Urrutia, M. Piattini, Representation of fuzzy knowledge in relational databases, in Proceedings of the 15th International Workshop on Database and Expert Systems Applications, Zaragoza (IEEE, 2004), pp. 917–921Google Scholar
  33. [Ham78]
    H. Hamacher, Über logische Aggregationen nicht-binär explizierter Entscheidungskriterien (Fischer Verlag, Frankfurt, 1978)Google Scholar
  34. [Has08]
    M. Hassler, Web Analytics (MITP, Heidelberg, 2008)Google Scholar
  35. [Hef07]
    D.R. Heffelfinger, Java EE Development Using GlassFish Application Server (Packt Publishing, Birmingham, 2007)Google Scholar
  36. [Hef11]
    D.R. Heffelfinger, Java EE Development with NetBeans 6 (Packt Publishing, Birmingham, 2011)Google Scholar
  37. [HKYC04]
    H.-G. Hwang, C.-Y. Ku, D.C. Yen, C.-C. Cheng, Critical factors influencing the adoption of data warehouse technology: a study of the banking industry in Taiwan. Decis. Support Syst. 37(1), 1–21 (2004)CrossRefGoogle Scholar
  38. [HM05]
    E.R. Harold, W.S. Means, XML in a Nutshell, vol. 3 (O’Reilly, Sebastopol, 2005)Google Scholar
  39. [HMPR04]
    A.R. Hevner, S.T. March, J. Park, S. Ram, Design science in information systems research. MIS Q. 28(1), 75–105 (2004)Google Scholar
  40. [HR04]
    D. Harel, B. Rumpe, Meaningful modeling: what’s the semantics of “Semantics”? Computer 37(10), 64–72 (2004)CrossRefGoogle Scholar
  41. [IMD11], Inc., The internet movie database., Sept 2011
  42. [INC11a]
    ICEsoft Technologies Inc., ICEFaces., Nov 2011
  43. [Inc11b]
    Oracle America Inc., Java architecture for XML binding., Nov 2011
  44. [Inc11c]
    Oracle America Inc., Java server faces., Nov 2011
  45. [Inc11d]
    VMWare Inc., JDBCTemplate documentation., Nov 2011
  46. [Inc11e]
    VMWare Inc., Spring framework., Nov 2011
  47. [Inm05]
    W.H. Inmon, Building the Data Warehouse, 4th edn. (Wiley, Indianapolis, 2005)Google Scholar
  48. [Ion08]
    A. Ionas, Modellierung, Entwicklung und Nutzung eines Data Warehouse für medizinische Communication Centers. PhD thesis, Departement für Informatik – Universität Fribourg, Fribourg, 2008Google Scholar
  49. [ISN08]
    W.H. Inmon, D. Strauss, G. Neushloss, DW 2.0 – The Architecture for the Next Generation of Data Warehousing (Morgan Kaufmann, Amsterdam, 2008)Google Scholar
  50. [ISO08]
    ISO, ISO/IEC 9075(1-4,9-11,13,14):2008 – Information Technology – Database Languages – SQL, Geneva, 2008Google Scholar
  51. [Kas96]
    N.K. Kasabov, Foundations of Neural Networks, Fuzzy Systems, and Knowledge Engineering (MIT, Cambridge, 1996)Google Scholar
  52. [Kau07]
    A. Kaushik, Web Analytics – An Hour a Day (O’Reilly, New York, 2007)Google Scholar
  53. [Kau12]
    M. Kaufmann, Inductive fuzzy classification – yet to publish. PhD thesis, University of Fribourg, Fribourg, 2012Google Scholar
  54. [KC04]
    R. Kimball, J. Caserta, The Data Warehouse ETL Toolkit (Wiley, Indianapolis, 2004)Google Scholar
  55. [KI93]
    B. Kosko, S. Isaka, Fuzzy logic. Sci. Am. 269(1), 76–81 (1993)Google Scholar
  56. [Kim98]
    R. Kimball, Help for dimensional modeling: helper tables let you design and manage multivalued dimensions successfully. DBMS online (Miller Freeman Inc., 1998),
  57. [KK07]
    D.P.V. Kasinadh, P. Radha Krishna, Building fuzzy OLAP using multi-attribute summarization, in Proceedings of the International Conference on Computational Intelligence and Multimedia Applications (ICCIMA 2007), Sivakasi, vol. 01 (IEEE, 2007), pp. 370–374Google Scholar
  58. [KKD05]
    K.V.N.N. Pavan Kumar, P. Radha Krishna, S. Kumar De, Fuzzy OLAP cube for qualitative analysis, in Intelligent Sensing and Information Processing, Chennai, 2005, pp. 290–295Google Scholar
  59. [Kos90]
    B. Kosko, Fuzziness vs. probability. Int. J. Gen. Syst. 17(2), 211–240 (1990)Google Scholar
  60. [Kos94a]
    B. Kosko, Fuzzy systems as universal approximators. IEEE Trans. Comput. 43(11), 1329–1333 (1994)CrossRefGoogle Scholar
  61. [Kos94b]
    B. Kosko, The probability monopoly. IEEE Trans. Fuzzy Syst. 2(1), 32–33 (1994)CrossRefGoogle Scholar
  62. [KR02]
    R. Kimball, M. Ross, The Data Warehouse Toolkit (Wiley, New York, 2002)Google Scholar
  63. [KRT+08]
    R. Kimball, M. Ross, W. Thornthwaite, J. Mundy, B. Becker, The Data Warehouse Lifecycle Toolkit (Wiley, Indianapolis, 2008)Google Scholar
  64. [KW99]
    N. Kasabov, B. Woodford, Rule insertion and rule extraction from evolving fuzzy neural networks: algorithms and applications for building adaptive, intelligent expert systems, in IEEE International Fuzzy Systems Conference Proceedings, Seoul, vol. 3 (IEEE, 1999), pp. 1406–1411Google Scholar
  65. [Leh98]
    W. Lehner, Modeling large scale OLAP scenarios, in Advances in Database Technology – EDBT’98, Valencia, vol. 1377 (Springer, 1998), pp. 153–167Google Scholar
  66. [Leh03]
    W. Lehner, Datenbanktechnologien für Data-Warehouse-Systeme – Konzepte und Methoden (dpunkt.verlag, Heidelberg, 2003)Google Scholar
  67. [LL03]
    M. Levene, G. Loizou, Why is the snowflake schema a good data warehouse design? Inf. Syst. 28(3), 225–240 (2003)CrossRefGoogle Scholar
  68. [LS97]
    H.-J. Lenz, A. Shoshani, Summarizability in OLAP and statistical data bases, in Statistical and Scientific Database Management, Olympia, 1997Google Scholar
  69. [LT01]
    H.J. Lenz, B. Thalheim, OLAP databases and aggregation functions, in Proceedings of the Thirteenth International Conference on Scientific and Statistical Database Management, SSDBM 2001, Fairfax (IEEE Computer Society, 2001), p. 0091Google Scholar
  70. [Mic10]
    Microsoft Corporation, MDX specifications., Apr 2010
  71. [MMWS03]
    A. Meier, C. Mezger, N. Werro, G. Schindler, Zur unscharfen Klassifikation von Datenbanken mit fCQL, in Proceedings of the GI-Workshop LLWA Lernen, Lernen, Wissen, Adaptivität, Karlsruhe, 2003Google Scholar
  72. [MRASV06]
    C. Molina, L. Rodríguez-Ariza, D. Sánchez, M.A. Vila, A new fuzzy multidimensional model. IEEE Trans. Fuzzy Syst. 14(6), 897–912 (2006)CrossRefGoogle Scholar
  73. [MS95]
    S.T. March, G.F. Smith, Design and natural science research on information technology. Decis. Support Syst. 15(4), 251–266 (1995)CrossRefGoogle Scholar
  74. [MS97]
    A. Motro, P. Smets, Uncertainty Management in Information Systems: From Needs to Solutions (Kluwer Academic, Boston, 1997)CrossRefGoogle Scholar
  75. [MSSV01]
    A. Meier, C. Savary, G. Schindler, Y. Veryha, Database schema with fuzzy classification and classification query language, in Proceedings of the International Congress on Computational Intelligence – Methods and Applications, University of Wales, Bangor, 2001Google Scholar
  76. [MSW07]
    A. Meier, G. Schindler, N. Werro, Extending relational databases with fuzzy classification. Department of Informatics, University of Fribourg, Fribourg, 2007Google Scholar
  77. [MSW08]
    A. Meier, G. Schindler, N. Werro, Fuzzy classification on relational databases, in Handbook of Research on Fuzzy Information Processing in Databases, vol. 2, ed. by J. Galindo (IGI Global, Hershey, 2008), pp. 586–614CrossRefGoogle Scholar
  78. [MT81]
    M. Mizumoto, K. Tanaka, Fuzzy sets and their operations. Inf. Control 48(1), 30–48 (1981)CrossRefGoogle Scholar
  79. [MT02]
    E. Medina, J. Trujillo, A standard for representing multidimensional properties: the common warehouse model (CWM), in Advances in Databases and Information Systems, ed. by Y. Manolopoulos, P. Navrat. Volume 2435/2002 of Lecture Notes in Computer Science (Springer, Berlin, 2002), pp. 232–247Google Scholar
  80. [MV00]
    A.O. Mendelzon, A.A. Vaisman, Temporal queries in OLAP, in Proceedings of the 26th International Conference on Very Large Data Bases, Cairo (Morgan Kaufmann, 2000), pp. 242–253Google Scholar
  81. [MWAS05]
    A. Meier, N. Werro, M. Albrecht, M. Sarakinos, Using a fuzzy classification query language for customer relationship management, in Proceedings of the 31st VLDB Conference, Trondheim, 2005Google Scholar
  82. [MZ04]
    E. Malinowski, E. Zimányi, Representing spatiality in a conceptual multidimensional model, in Proceedings of the 12th Annual ACM International Workshop on Geographic Information Systems, Washington, DC (ACM, 2004), pp. 12–22Google Scholar
  83. [Nau00]
    D.D. Nauck, Data analysis with neuro-fuzzy methods. Technical report, Fakultät für Informatik der Otto-von-Guericke-Universität Magdeburg, 2000Google Scholar
  84. [NH94]
    R. Ng, J. Han, Efficient and effective clustering method for spatial data mining, in Proceedings of the 20th International Conference on Very Large Databases, Santiago, 1994, pp. 144–155Google Scholar
  85. [Nüe11]
    S. Nüesch, OLAP cube for a fuzzy data warehouse. Bachelor thesis, University of Fribourg, Fribourg, 2011Google Scholar
  86. [OLA10]
    OLAP Council, OLAP and OLAP server definitions., Aug 2010
  87. [Ora10]
  88. [Ora11]
    Oracle, Oracle essbase hyperion database administration documentation., Sept 2011
  89. [Pen10]
    Pentaho Corporation, Mondrian OLAP server., Apr 2010
  90. [Per06]
    B.W. Perry, Ajax Hacks (O’Reilly, Sebastopol, 2006)Google Scholar
  91. [Pet94]
    S. Peterson, Stars: a pattern language for query optimized schema. Sequent Computer Systems, 1994.
  92. [PJ01]
    T.B. Pedersen, C.S. Jensen, Multidimensional database technology. Computer 34(12), 40–46 (2001)CrossRefGoogle Scholar
  93. [PJD99]
    T.B. Pedersen, C.S. Jensen, C.E. Dyreseon, Supporting imprecision in multidimensional databases using granularities, in Eleventh International Conference on Scientific and Statistical Database Management, Cleveland, 1999Google Scholar
  94. [Pos11a]
    PostgreSQL Global Development Group, PostgreSQL., Jan 2011
  95. [Pos11b]
    PostgreSQL Global Development Group, PostgreSQL documentation., Jan 2011
  96. [Pos11c]
    PostgreSQL Global Development Group, PostgreSQL documentation of server programming., Sept 2011
  97. [Pos11d]
    PostgreSQL Global Development Group. PostgreSQL documentation of window functions., June 2011
  98. [PSP07]
    D. Pérez, M.J. Somodevilla, I.H. Pineda, Fuzzy spatial data warehouse: a multidimensional model, in Eighth Mexican International Conference on Current Trends in Computer Science, Morelia, 2007Google Scholar
  99. [Pur02]
    T. Purcell, Star join optimization: DB2 UDB for z/OS and OS/390. Int. DB2 User Group (IDUG) Solut. J. 9(1), 17–19 (2002)Google Scholar
  100. [Rat11]
    C. Rathgeb, Entwicklung eines fuzzy data warehouse. Bachelor thesis, University of Fribourg, Fribourg, 2011Google Scholar
  101. [RS90]
    M. Rafanelli, A. Shoshani, STORM: a statistical object representation model, in Statistical and Scientific Data Base Management Conference, Charlotte, 1990, pp. 14–29Google Scholar
  102. [Sch98]
    G. Schindler, Fuzzy-Datenanalyse durch kontextbasierte Datenbankabfragen. PhD thesis, Technische Hochschule Aachen, 1998Google Scholar
  103. [Sch10]
    L. Scheuner, Entwurf und Erstellung eines Data Warehouse für die Schweizerische Futtermitteldatenbank. Master’s thesis, Universität Zürich and Universität Fribourg, 2010Google Scholar
  104. [Sho82]
    A. Shoshani, Statistical databases: characteristics, problems, and some solutions, in Proceedings of the 8th International Conference on Very Large Data Bases, Mexico City (Morgan Kaufmann, 1982), pp. 208–222Google Scholar
  105. [SMH04]
    H. Schepperle, A. Merkel, A. Haag, Erhalt von imperfektion in einem data warehouse, in Internationales Symposium: Data-Warehouse-Systeme und Knowledge-Discovery, Zaragoza, 2004Google Scholar
  106. [SSR08]
    L. Sapir, A. Shmilovici, L. Rokach, A methodology for the design of a fuzzy data warehouse, in 4th International IEEE Conference on Intelligent Systems, IS’08, Varna, vol. 1, 2008Google Scholar
  107. [Ter11]
    Teradata,, June 2011
  108. [Til91]
    T. Tilli, Fuzzy-Logik: Grundlagen, Anwendungen, Hard- und Software (Franzis-Verlag GmbH, München, 1991)Google Scholar
  109. [TMD10]
    TMDb Inc., The open movie database project., Dec 2010
  110. [TZZ79]
    U. Thole, H.J. Zimmermann, P. Zysno, On the suitability of minimum and product operators for the intersection of fuzzy sets* 1. Fuzzy Sets Syst. 2(2), 167–180 (1979)CrossRefGoogle Scholar
  111. [Vas98]
    P. Vassiliadis, Modeling multidimensional databases, cubes and cube operations, in Proceedings of the 10th International Conference on Scientific and Statistical Database Management, Capri, pp. 53–62 (IEEE, 1998)Google Scholar
  112. [Ver11]
    Vertica, Vertica database., Sept 2011
  113. [VS99]
    P. Vassiliadis, T. Sellis, A survey of logical models for OLAP databases. ACM SIGMOD Rec. 28(4), 64–69 (1999)CrossRefGoogle Scholar
  114. [VS00]
    P. Vassiliadis, S. Skiadopoulos, Modelling and optimisation issues for multidimensional databases, in Advanced Information Systems Engineering (Springer, Berlin, 2000), pp. 482–497Google Scholar
  115. [Wer88]
    B. Werners, Aggregation models in mathematical programming. Math. Models Decis. Support 48, 295–305 (1988)CrossRefGoogle Scholar
  116. [Wer08]
    N. Werro, Fuzzy classification of online customers. PhD thesis, University of Fribourg, Fribourg, 2008Google Scholar
  117. [Yag80]
    R.R. Yager, On a general class of fuzzy connectives. Fuzzy Sets Syst. 4(3), 235–242 (1980)CrossRefGoogle Scholar
  118. [Zad65]
    L.A. Zadeh, Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar
  119. [Zad75a]
    L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning – Part I. Inf. Sci. 8, 199–249 (1975)CrossRefGoogle Scholar
  120. [Zad75b]
    L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning – Part II. Inf. Sci. 8, 301–357 (1975)CrossRefGoogle Scholar
  121. [Zad75c]
    L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning – Part III. Inf. Sci. 9, 43–80 (1975)CrossRefGoogle Scholar
  122. [Zad78a]
    L.A. Zadeh, Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978)CrossRefGoogle Scholar
  123. [Zad78b]
    L.A. Zadeh, PRUF – a meaning representation language for natural languages. Int. J. Man-Machine Stud. 10, 395–460 (1978)CrossRefGoogle Scholar
  124. [Zad83]
    L.A. Zadeh, A computational approach to fuzzy quantifiers in natural languages* 1. Comput. Math. Appl. 9(1), 149–184 (1983)CrossRefGoogle Scholar
  125. [Zad94]
    L.A. Zadeh, Fuzzy logic, neural networks, and soft computing. Commun. ACM 37(3), 77–84 (1994)CrossRefGoogle Scholar
  126. [Zad96]
    L.A. Zadeh, Test-score semantics for natural languages and meaning representation via PRUF, in Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers, vol. 6 (World Scientific, Singapore, 1996)CrossRefGoogle Scholar
  127. [Zim91]
    H.-J. Zimmermann, Fuzzy Set Theory and its Applications (Kluwer Academic, Boston, 1991)CrossRefGoogle Scholar
  128. [ZKY96]
    L.A. Zadeh, G.J. Klir, B. Yuan (eds.), Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems: Selected Papers, vol. 6 (World Scientific, Singapore, 1996)Google Scholar
  129. [ZZ80]
    H. Zimmermann, P. Zysno, Latent connectives in human decision making. Fuzzy Sets Syst. 4, 37–51 (1980)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Daniel Fasel
    • 1
  1. 1.Scigility Inc.MarlySwitzerland

Personalised recommendations