Ambient Assisted Living Environment Towards Internet of Things Using Multifarious Sensors Integrated with XBee Platform

  • N. K. Suryadevara
  • S. Kelly
  • S. C. Mukhopadhyay
Chapter
Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 9)

Abstract

In this study, we reported the design and development of an integratedplatform for monitoring and controlling of household appliances using internetworking technologies associated with factors of ZigBee wireless sensor network. The intelligent internetworking architectural mastery plus the reliable measurements associated with household sensors variables are comprehended. The developed system is a combination of distributed smart sensing systems and a data system for aggregation and exploration of fused data. Benefits associated with the developed system are in effective realization of household appliances monitoring variables through Internet of Things. The robustness of the system in executing multiple tasks for long durations provides the longitudinal assessment behavior of the inhabitant. The prototype has been tested in the actual home environment and the results are viewed through real-time graphical data analysis representation.

Keywords

Wireless sensor networks ZigBee Internet protocol Internet of Things (IoT) Wellness Smart home. 

References

  1. 1.
    Surie, D., Laguionie, O., Pederson, T.: Wireless sensor networking of everyday objects in a smart home environment. In: Proceedings of the International Conference on Intelligent Sensors, Sensor Networks and Information Processing- ISSNIP- 2008, pp. 189–194 (2008).Google Scholar
  2. 2.
    Vision and challenges for realizing the Internet of Things, European Union 2010, ISBN 9789279150883.Google Scholar
  3. 3.
    Internet 3.0: The Internet of Things. \(\copyright \) Analysys Mason Limited 2010.Google Scholar
  4. 4.
    Baronti, P., Pillai, P., Chook, V.W.C., Chessa, S., Gotta, A., Hu, Y.F.: Wireless sensor networks: a survey on the state of the art and the 802.15.4 and ZigBee standards. Comput. Commun. 30(7), 1655–1695 (2007)CrossRefGoogle Scholar
  5. 5.
    Lu, C-W., Li, S-C., Wu, Q.: Interconnecting ZigBee and 6LoWPAN wireless sensor networks for smart grid applications. In: Proceedings of the 5th International Conference on Sensing Technology (ICST)- 2011, pp. 267–272.Google Scholar
  6. 6.
    Suryadevara, N.K., Mukhopadhyay, S.C.: Wireless sensor network based home monitoring system for wellness determination of elderly. IEEE Sens. J. 12(6), 1965–1972 (2012)CrossRefGoogle Scholar
  7. 7.
    Suryadevara, N.K., Gaddam, A., Rayudu, R.K., Mukhopadhyay, S.C.: Wireless sensors network based safe home to care elderly people: behaviour detection. Elsevier Sens. Actuat. A Phys. 25, 96–99 (2012). http://dx.doi.org/10.1016/j.sna.2012.03.020
  8. 8.
    Ranhotigamage, C., Mukhopadhyay, S.C.: Field trials and performance monitoring of distributed solar panels using a low cost wireless sensors network for domestic applications. IEEE Sens. J. 11(10), 2583–2590 (2011)CrossRefGoogle Scholar
  9. 9.
    Kaur, K., Mukhopadhyay, S.C., Schnepper, J., Haefke, M., Ewald, H.: A ZigBee based wearable physiological parameters monitoring system. IEEE Sens. J. 12(3), 423–430 (2012)CrossRefGoogle Scholar
  10. 10.
    Alabri, H.M., Mukhopadhyay, S.C., Punchihewa, G.A., Suryadevara, N.K., Huang, Y.M.: Comparison of applying sleep mode function to the smart wireless environmental sensing stations for extending the life time. In: Proceedings of the IEEE International Instrumentation and Measurement Technology Conference (I2MTC)-2012, pp. 2634–2639 (2012).Google Scholar
  11. 11.
    Mendez, G.M., Yunus, M.A.M., Mukhopadhyay, S.C.: A WiFi based smart wireless sensor network for monitoring an agricultural environment. In: Proceedings of IEEE I2MTC 2012 conference, IEEE Catalog number CFP12MT-CDR, pp. 2640–2645. Graz, Austria, 13–16 May 2012. ISBN 978-1-4577-1771-0.Google Scholar
  12. 12.
    Howitt, I., Gutierrez, J.A.: IEEE 802.15.4 low rate -wireless personal area network coexistence issues. Proc. IEEE Wirel. Commun. Netw. WCNC 3(20), 1481–1486 (2003).Google Scholar
  13. 13.
    Angrisani, L., Bertocco, M., Foortin, D., Sona, A.: Assessing coexistence problems of IEEE 802.11b and IEEE 802.15.4 wireless networks through cross-layer measuremennts. In: Instrumentation and Measurement Technology Conference Proceedings, 2007, pp. 1–6. IMTC 2007- IEEE, 1–3 May 2007.Google Scholar
  14. 14.
    Khaleel, H., Pastrone, C., Penna, F., Spirito, M.A., Garello, R.: Impact of Wi-Fi traffic on the IEEE 8022.15.4 channels occupation in indoor environments. In: International Conferrence on Electromagneticcs in Advanced Applications, 2009 ICEAA ’09, pp. 1042–1045, 14–18 Sept 2009.Google Scholar
  15. 15.
    Khoshdelniat, R., Sinniah, G.R., Bakar, K.A., Shaharil, M.H.M., Suryady, Z., Sarwar, U.: Performance evaluation of IEEE802.15.4 6LoWPAN gateway. In: Proceedings of the 17th Asia-Pacific Conference on Communications (APCC)- 2011, pp. 253–258 (2011).Google Scholar
  16. 16.
    Kushalnagar, N., Montenegro, G., Hui, J., Culler, D.: Transmission of IPv6 Packets over IEEE 802.15.4 Networks. RFC 4944 (2007).Google Scholar
  17. 17.
    Lee, K.H., Won, J.H., Bae, C.S.: IGN2IP: Internetworking intelligent gadget network based on 802.15.4 with IP network. Proceedings of the International Conference on Consumer Electronics, ICCE 2008, Digest of Technical Papers, pp. 1–2 (2008).Google Scholar
  18. 18.
    Mesrinejad, F., Hashim F, Noordin, N.K., Rasid, M.F.A., Abdullah, R.S.A.R.: The effect of fragmentation and header compression on IP-based sensor networks (6LoWPAN). In: Proceedings of the 17th Asia-Pacific Conference on Communications (APCC)- 2011, pp. 253–258 (2011).Google Scholar
  19. 19.
    Kelly, S.DT., Suryadevara, N.K., Mukhopadhyay, S.C.: Towards the implementation of IoT for environmental condition monitoring in homes. IEEE Sens. J. 13(10), 3846–3853 (2013). doi: 10.1109/JSEN.2013.2263379.Google Scholar
  20. 20.
    OpenWRT website. http://openwrt.org/
  21. 21.
    Wang, Y.: Probabilistic QoS analysis in wireless sensor networks. Ph.D dissertation, Department of Computer Science and Engineering, University of Nebraska - Lincoln, Nebraska (2012).Google Scholar
  22. 22.
    Zakaria, A.: Quality of service in wireless sensor networks. http://cs.uwindsor.ca/richard/cs510/survey_zakaria.pdf. Accessed 06 Oct 2012
  23. 23.
    Suryadevara, N.K., Mukhopadhyay, S.C., Wang, R., Rayudu, R.K.: Forecasting the behavior of an elderly using wireless sensors data in a smart home. Eng. Appl. Artif. Intell. 26(10), pp. 264–2652 (2013). ISSN 0952–1976, http://dx.doi.org/10.1016/j.engappai.2013.08.004
  24. 24.
    Suryadevara, N.K., Mukhopadhyay, S.C., Wang, R., Rayudu, R.K., Huang, Y.M.: Reliable measurement of wireless sensor network data for forecasting wellness of elderly at smart home. In: Instrumentation and Measurement Technology Conference (I2MTC), 2013 IEEE, International, pp. 16–21, 6–9 May 2013. doi: 10.1109/I2MTC.2013.6555372.
  25. 25.
    Survadevara, N.K., Mukhopadhyay, S.C., Rayudu, R.K.: Applying SARIMA time series to forecast sleeping activity for wellness model of elderly monitoring in smart home. In: Sixth International Conference on Sensing Technology (ICST), 2012, pp. 157–162, 18–21 Dec 2012. doi: 10.1109/ICSensT.2012.6461661.

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • N. K. Suryadevara
    • 1
  • S. Kelly
    • 1
  • S. C. Mukhopadhyay
    • 1
  1. 1.School of Engineering and Advanced TechnologyMassey UniversityPalmerston NorthNew Zealand

Personalised recommendations