A High Performance ROIC for a Standalone Monitoring System in IOT Environments

Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI, volume 9)


This chapter presents a low power consumption Read Out Integrated Circuit (ROIC) for conditioning and acquiring capacitive sensor signals that interfaces with a supervising system using frequency processing based architecture with high efficient frequency-to-digital converters with programmable resolution. The supervising system communicates with the world using an Ethernet bus interface. The precision module of the system is constituted by the ROIC that is designed using a temperature compensated voltage reference circuit (bandgap) coupled to a low power capacitance to frequency converter (CtoF). A controlled compensation of the channel length modulation effect and the suppression of mobility dependence reduce the consumption of the ROIC down to \(26\,\upmu \mathrm{A}\) at half power supply. Furthermore, the temperature dependent coefficient achieved is only \(16\,\mathrm{ppm}/^{\circ }\mathrm{C}\).


  1. 1.
    Goeger, D., Blankertz, M., Woern, H.: A tactile proximity sensor, in Proceedings of the IEEE Sensors 2010 Conference, pp. 589–594 (2010)Google Scholar
  2. 2.
    Aragonés, R., Oliver, J., Ferrer, C.: A multichannel voltage to frequency to code converter for sensors applications, in Proceedings of the XXIII Conference on Design of Circuits and Integrated Systems (DCIS), November 2008Google Scholar
  3. 3.
    Aragonés, R., Álvarez, P., Oliver, J., Ferrer, C.: Comparison of readout circuitry techniques for data acquisition in raw sensor systems, in Proceedings of the IECON 2010 conference, Arizona, November 2010, pp. 1252–1257Google Scholar
  4. 4.
    Yurish, S.Y.: Data Acquisition for Smart Sensors and Transducers. Wiley Sensors Portal book, pp. 52–53, 58–60 (2001)Google Scholar
  5. 5.
    Shih, I.-C., Shen, T., Otis, B.P.: A 2.3 W wireless intraocular pressure/temperature monitor. IEEE J. Solid-State Circuits 46(11), 2592–2601 (2011)Google Scholar
  6. 6.
    Tan, Z., Shalmany, S.H., Meijer, G.C.M., Pertijs, M.A.P.: An energy-efficient 15-bit capacitive-sensor interface based on period modulation. IEEE J. Solid-State Circuits 47(7), 1703–1711 (2012)Google Scholar
  7. 7.
    Council, N.I.: Disruptive civil technologies: six technologies with potential impacts on us interests out to 2025. Conference Report CR 2008–2007, April 2008Google Scholar
  8. 8.
    Atzori, L., Iera, A., Morabito, G.: The internet of things: a survey. Int. J. Comput. Telecommun. Netw. 54(15) (2010)Google Scholar
  9. 9.
    Song, B., Kim, B.: A 50 % power reduction scheme for CMOS relaxation circuit, AP-ASIC’99 Conference, pp. 154–157 (1999)Google Scholar
  10. 10.
    Aragonés, R., Oliver, J., Ferrer, C.: A generic signal processor for frequency sensor data acquisition, in Proceedings of the XXII Conference on Design of Circuits and Integrated Systems (DCIS), November 2007, pp. 345–350Google Scholar
  11. 11.
    De Vita, G., Iannaccone, G., Andreani, P.: A 300 nW, 12 ppm/C voltage reference in a digital 0.35 \(\upmu \)m CMOS process. in Symposium VLSI Circuits Digest of Technical Papers, Honolulu, HI, 2006, pp. 81–82Google Scholar
  12. 12.
    Razavi, B.: A study of phase noise in CMOS oscillation. IEEE J. Solid-State circuits 31(3), 331–343 (1996)Google Scholar
  13. 13.
    Aragonés, R., Oliver, J., Ferrer, C.: A 16 ppm/\(^{\circ }\)C ROIC for capacitive-sensor signal-acquisition applications, in Proceedings of the IEEE Sensors 2012, TaipeiGoogle Scholar
  14. 14.
    Hylby, Z.: Embedded web services. IEEE Wirel. Commun. 17(6):52–57 (2010)Google Scholar
  15. 15.
    Xilinx: ZedBoard v 14.4: Zynq-7000 AP SoC concepts, tools, and techniques a hands-on guide to effective embedded system design (March 2013)Google Scholar
  16. 16.
    Garcia-Macias, J.A., Alvarez-Lozano, J., Estrada-Martinez, P., Aviles-Lopez, E.: Browsingthe internet of things with sentient visors. IEEE Comput. Soc. 44(5), 46–52 (2011)Google Scholar
  17. 17.
    Wang, W., Tse, P.W., Lee, J.: Remote machine maintenance system through internet and mobile communication. Int. J. Adv. Manuf. Technol. 31(7–8), 783–789 (2007)Google Scholar
  18. 18.
    Armstrong, R., Muggli, M., Ouellette, M., Thammanu, S.: XAPP433—Embedded system example: web server design using microBlaze soft processor. Xilinx Application Note (2006)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Universitat Autònoma de BarcelonaBarcelonaSpain
  2. 2.Institut de Microeletrònica de Barcelona (CNM-CSIC)Bellaterra (Barcelona)Spain
  3. 3.IEEE MemberBarcelonaSpain

Personalised recommendations