Skip to main content

6TiSCH Wireless Industrial Networks: Determinism Meets IPv6

Part of the Smart Sensors, Measurement and Instrumentation book series (SSMI,volume 9)

Abstract

In the last 40 years we have witnessed the emergence of the Operational Technology (OT) and the Information Technology (IT) in parallel, each established with its own scope and range of applications; then, the progressive convergence of IT over an IP infrastructure, imprinted by the birth of the Information and Communications Technology (ICT). Nowadays, we are witnessing the unstoppable evolution of the Internet of Things (IoT), and the upcoming integration of OT and IT. The technologies facilitating such OT/IT convergence only recently commenced to take shape. In detail, existing industrial Wireless Sensor Network technologies have demonstrated that the IEEE802.15.4e Timeslotted Channel Hopping (TSCH) effectively enables industrial-grade deterministic properties for control loops with low latency, ultra-low jitter, ultra-low power consumption and a high reliability. This chapter introduces the work recently started at the IETF by the 6TiSCH working group, and which aims at enabling IPv6 over the TSCH mode of the IEEE802.15.4e standard. In particular, 6TiSCH standardizes different mechanisms for allocating link-layer resources and trade off latency and bandwidth with power consumption. Several approaches are supported, based on a combination of centralized and distributed techniques.

Keywords

  • Medium Access Control
  • Internet Protocol
  • Medium Access Control Protocol
  • Medium Access Control Layer
  • Internet Engineer Task Force

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-04223-7_5
  • Chapter length: 31 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   99.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-04223-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   129.99
Price excludes VAT (USA)
Hardcover Book
USD   169.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. 1.

    With IEEE802.15.4-compliant radios operating in the 2.4 GHz frequency band, a maximum-length frame of 127 bytes takes about \(4\) ms to transmit; a shorter ACK takes about \(1\) ms. With a \(10\) ms slot (a typical duration), this leaves \(5\) ms to radio turnaround, packet processing and security operations.

  2. 2.

    A broadcast cell is an alias for “a scheduled cell with neighbor address the broadcast address”.

  3. 3.

    This work implies new IPv6 ND proxy operations as illustrated in Sect. 3.6.

References

  1. Postel, J.: Internet protocol, RFC 791, Internet Engineering Task Force (1981)

    Google Scholar 

  2. Andreasen, F., Foster, B.: Media gateway control protocol (MGCP) version 1.0, RFC3435, Internet Engineering Task Force (2003)

    Google Scholar 

  3. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R., Handley, M., Schooler, E.: SIP: Session initiation protocol, RFC 3261, Internet Engineering Task Force (2002)

    Google Scholar 

  4. Schulzrinne, H., Casner, S., Frederick, R., Jacobson, V.: RTP: A transport protocol for real-time applications, RFC3550, Internet Engineering Task Force (2003)

    Google Scholar 

  5. Deering, S., Hinden, R.: Internet protocol, version 6 (IPv6) specification, RFC2460, Internet Engineering Task Force (1998)

    Google Scholar 

  6. Baker, F., Li, X., Bao, C., Yin, K.: Framework for IPv4/IPv6 translation, RFC6144, Internet Engineering Task Force (2011)

    Google Scholar 

  7. Conta, A., Deering, S., Gupta, M.: Internet control message protocol (ICMPv6) for the internet protocol version 6 (IPv6) specification, RFC4443, Internet Engineering Task Force (2006)

    Google Scholar 

  8. Narten, T., Nordmark, E., Simpson, W., Soliman, H.: Neighbor discovery for IP version 6 (IPv6), RFC4861, Internet Engineering Task Force (2007)

    Google Scholar 

  9. Winter, T., Thubert, P., Brandt, A., Hui, J., Kelsey, R., Levis, P., Pister, K., Struik, R., Vasseur, J.P., Alexander, R.: RPL: IPv6 routing protocol for low-power and lossy networks, RFC 6550, Internet Engineering Task Force (2012)

    Google Scholar 

  10. Droms, R., Bound, J., Volz, B., Lemon, T., Perkins, C., Carney, M.: Dynamic host configuration protocol for IPv6 (DHCPv6), RFC3315, Internet Engineering Task Force (2003)

    Google Scholar 

  11. Vida, R., Costa, L.: Multicast listener discovery version 2 (MLDv2) for IPv6, RFC3810, Internet Engineering Task Force (2004)

    Google Scholar 

  12. Postel, J.: User datagram protocol, RFC768, Internet Engineering Task Force (1980)

    Google Scholar 

  13. Shelby, Z., Hartke, K., Bormann, C., Frank, B.: Constrained application protocol (CoAP), IETF CoRE Working Group (2011)

    Google Scholar 

  14. Palattella, M.R., Accettura, N., Vilajosana, X., Watteyne, T., Grieco, L.A., Boggia, G., Dohler, M.: Standardized protocol stack for the internet of (important) things. IEEE Commun. Surv. Tut. 15(3), 1389–1406 (2012)

    CrossRef  Google Scholar 

  15. 6TiSCH Mailing list available at: https://www.ietf.org/mailman/listinfo/6tsch

  16. 6TiSCH homepage available at: https://bitbucket.org/6tsch/

  17. IEEE802.15.4e: IEEE standard for local and metropolitan area networks. Part 15.4: Low-Rate Wireless Personal Area Networks (LRWPANs) Amendment 1: MAC Sublayer, Institute of Electrical and Electronics Engineers Std., April (2012)

    Google Scholar 

  18. Thubert, P., Watteyne, T., Palattella, M.R., Vilajosana, X., Wang, Q.: IETF 6TSCH: combining IPv6 connectivity with industrial performance. In: Proceedings of International Workshop on Extending Seamlessly to the Internet of Things (esIoT), Taiwan, July (2013)

    Google Scholar 

  19. Watteyne, T., Palattella, M.R., Grieco, L.A.: Using IEEE802.15.4e TSCH in an LLN context: overview, problem statement and goals. draft-watteyne-6tsch-tsch-lln-context-01 (work in progress), Feb (2013)

    Google Scholar 

  20. IEEE802.15.4: IEEE standard for local and metropolitan area networks - Part. 15.4: Wireless Medium Access Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), Standard for Information Technology Std., Sept (2011)

    Google Scholar 

  21. Kushalnagar, N., Montenegro, G., Schumacher, C.: IPv6 over low-power wireless personal area networks (6LoWPANs): overview, assumptions, problem statement, and goals, RFC 4919, Internet Engineering Task Force (2007)

    Google Scholar 

  22. Pister, K., Doherty, L.: TSMP: Time synchronized mesh protocol. In: Proceedings of International Symposium on Distributed Sensor Networks (DSN), Florida, USA (2008)

    Google Scholar 

  23. Highway Addressable Remote Transducer, a group of specifications for industrial process and control devices administered by the HART Foundation. Available at http://www.hartcomm.org

  24. ISA, ISA100, Wireless systems for automation. Available at http://www.isa.org/Community/SP100WirelessSystemsforAutomation, May (2008)

  25. Nixon, M.: A Comparison of WirelessHART and ISA100.11a (2012), July, white paper

    Google Scholar 

  26. Stanislowski, D., Vilajosana, X., Wang, Q., Watteyne, T., Pister, K.: Adaptive synchronization in IEEE802.15.4e networks. IEEE Trans. Industr. Inf. PP(99), 1 (2013)

    Google Scholar 

  27. Palattella, M.R., Thubert, P., Watteyne, T., Wang, Q.: Terminology in IPv6 over time slotted channel hopping. draft-palattella-6tsch-terminology-00 (work in progress), Mar (2013)

    Google Scholar 

  28. Palattella, M.R., Accettura, N., Grieco, L.A., Boggia, G., Dohler, M., Engel, T.: On optimal scheduling in duty-cycled IoT industrial applications using IEEE 802.15.4e TSCH. IEEE Sens. J. 13(10), 3655–3666 (2013)

    CrossRef  Google Scholar 

  29. Watteyne, T., Vilajosana, X., Kerkez, B., Chraim, F., Weekly, K., Wang, Q., Glaser, S., Pister, K.: OpenWSN: a standards-based low-power wireless development environment. Trans. Emerg. Telecommun. Technol. 23(5), 480–493 (2012)

    Google Scholar 

  30. uRes, available at https://openwsn.atlassian.net/wiki/display/OW/uRES

  31. Braden, R., Zhang, L., Berson, S., Herzog, S., Jamin, S.: Resource reservation protocol (RSVP) : version 1 functional specification. RFC 2205, Internet Engineering Task Force (1997)

    Google Scholar 

  32. Morellk, A., Vilajosana, X., Vicario, J.L., Watteyne, T.: Label switching over IEEE802.15.4e networks. Trans. Emerg. Telecommun. Technol. 24(5), 458–475 (2013)

    Google Scholar 

  33. Thubert, P.: 6LoWPAN backbone router. draft-thubert-6lowpan-backbone-router-03 (work in progress), Feb (2013)

    Google Scholar 

  34. Thubert, P., Assimiti, R.A., Watteyne, T.: An architecture for IPv6 over time synchronized channel hopping. draft-thubert-6tsch-architecture-00 (work in progress), March (2013)

    Google Scholar 

  35. Vasseur, J.P., Le Roux, J.L.: Path computation element (PCE) communication protocol (PCEP) RFC 5440, Internet Engineering Task Force (2009)

    Google Scholar 

  36. Hancock, R., Karagiannis, G., Loughney, J., Van den Bosch, S.: Next steps in signaling (NSIS): framework. RFC 4080, Internet Engineering Task Force (2005)

    Google Scholar 

  37. Forsberg, D., Ohba, Y., Patil, B., Tschofenig, H., Yegin, A.: Protocol for carrying authentication for network access (PANA), RFC 5191, Internet Engineering Task Force (2008)

    Google Scholar 

  38. Duffy, P., Chakrabarti, S., Cragie, R., Ohba, Y., Yegin, A.: Protocol for carrying authentication for network access (PANA) relay element, RFC 6345, Internet Engineering Task Force (2011)

    Google Scholar 

  39. Yegin, A., Cragie, R.: Encrypting the protocol for carrying authentication for network access (PANA) attribute-value pairs, RFC 6786, Internet Engineering Task Force (2012)

    Google Scholar 

  40. Wang, Q., Vilajosana, X., Watteyne, T.: 6tus adaptation layer specification. draft-wang-6tsch-6tus-00 (work in progress), March (2013)

    Google Scholar 

  41. The OpenFlow Switch Specification. Available at http://OpenFlowSwitch.org

  42. Doria, A., Hadi Salim, J., Haas, R., Khosravi, H., Wang, W., Dong, L., Gopal, R., Halpern, J.: Forwarding and control element separation (ForCES) protocol specification RFC 5810, Internet Engineering Task Force (2010)

    Google Scholar 

  43. Vilajosana, X., Pister, K.: Minimal 6TSCH configuration, draft-vilajosana-6tsch-basic-01 (work in progress), July (2013)

    Google Scholar 

  44. Thubert, P.: Objective function zero for the routing protocol for low-power and lossy networks (RPL), RFC 6552, Internet Engineering Task Force (2012)

    Google Scholar 

  45. IETF Working Group: DTLS In Constrained Environments (DICE), - charter at http://datatracker.ietf.org/wg/dice/charter/

  46. Mannie, E.: Generalized multi-protocol label switching (GMPLS) architecture, RFC3945, Internet Engineering Task Force (2004)

    Google Scholar 

  47. Rosen, E., Viswanathan, A., Callon, R.: Multiprotocol label switching architecture, RFC3031, Internet Engineering Task Force (2001)

    Google Scholar 

  48. Thubert, P., Hui, J.W.: LLN fragment forwarding and recovery, draft-thubert-roll-forwarding-frags-02 (work in progress), Sept (2013)

    Google Scholar 

  49. Thaler, D., Huitema, C.: Multi-link subnet support in IPv6, draft-ietf-ipv6-multilink-subnets-00.txt, Internet Draft, Internet Engineering Task Force (2002)

    Google Scholar 

  50. Thaler, D.: Multi-link subnet issues, RFC4903, Internet Engineering Task Force (2007)

    Google Scholar 

  51. Perkins, C., Johnson, D., Arkko, J.: Mobility support in IPv6, RFC 6275, Internet Engineering Task Force (2011)

    Google Scholar 

  52. Shelby, Z., Chakrabarti, S., Nordmark, E., Bormann, C.: Neighbor discovery optimization for IPv6 over low-power wireless personal area networks (6LoWPANs), RFC 6775, Internet Engineering Task Force (2012)

    Google Scholar 

  53. Chakrabarti, S., Nordmark, E., Wasserman, M.: Efficiency aware IPv6 neighbor discovery optimization draft-chakrabarti-nordmark-6man-efficient-nd-01 (work in progress), Nov (2012)

    Google Scholar 

  54. Doherty, L., Lindsay, W., Simon, J.: Channel-specific wireless sensor network path data. In: Proceedings of IEEE ICCN 2007 Conference, pp. 89–94 (2007)

    Google Scholar 

  55. Dust Networks Linear Technology (2013) Smart mesh ip

    Google Scholar 

  56. Vilajosana, I., Llosa, J., Martinez, M., Pacho, J.C.: Wireless sensors helps monitoring one of world most advanced load and unload harbor terminals, White Paper available at http://www.loadsensing.com (2012)

  57. Emerson: Emerson wireless technology helps RWE maximize gas storage capacity and improve efficiency and safety, White Paper available at http://www.emersonpress.com (2013)

  58. Evans, P.C., Annunziata, M.: Industrial internet: Pushing the boundaries of minds and machines, White Paper available at http://www.ge.com (2012)

Download references

Acknowledgments

This publication was supported by the FP7 projects IoT6-288445, CALIPSO-288879, RELYONIT-317826 and SWAP-251557, which are partially funded by the European Community. Xavier Vilajosana is funded by the Spanish Ministry of Education under Fullbright-BE grant (INF-2010-0319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rita Palattella .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Palattella, M.R., Thubert, P., Vilajosana, X., Watteyne, T., Wang, Q., Engel, T. (2014). 6TiSCH Wireless Industrial Networks: Determinism Meets IPv6. In: Mukhopadhyay, S. (eds) Internet of Things. Smart Sensors, Measurement and Instrumentation, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-04223-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04223-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04222-0

  • Online ISBN: 978-3-319-04223-7

  • eBook Packages: EngineeringEngineering (R0)