Towards an Integrative Inversion and Interpretation of Airborne and Terrestrial Data

  • Hans-Jürgen Götze
  • Martin Afanasjew
  • Michael Alvers
  • Liliana Barrio-Alvers
  • Ralph-Uwe Börner
  • Christian Brandes
  • Rudolf Eröss
  • Peter Menzel
  • Uwe Meyer
  • Mathias Scheunert
  • Bernhard Siemon
  • Klaus Spitzer
  • Dominik Steinmetz
  • Johannes Stoll
  • Gupta Sudha
  • Bülent Tezkan
  • Angelika Ullmann
  • Jutta Winsemann
Chapter

Abstract

The aim of the joint research project is to generate information from airborne geophysical measurements that are properly transferred from physically quantitative descriptions of the subsurface (electrical conductivities, densities, susceptibilities) into spatial structures and information matching the understanding of end-users: geologists, hydrogeologists, engineers and others. We suggest new types of inversion, which are integrated in the interactive workflow to support typical trial and error approaches of inverse and forward EM and gravity/magnetic field modelling for 1D and 3D cases. Subsequently, we combine resistivity and density models with geological 3D subsurface models. The integrated workflow minimizes uncertainties in the interpretation of geophysical data and allows a significantly improved and fast interpretation and imaging of the 3D subsurface architecture. The results of the AIDA project demonstrate that combined 3D geological and geophysical models enable a much better reconstruction of the subterraneous space. AIDA stands for “From Airborne Data Inversion to In-Depth Analysis” and is part of the R&D program: Tomography of the Earth’s Crust—From Geophysical Sounding to Real-Time Monitoring.

References

  1. Alvers MR (1998) Zur Anwendung von Optimierungsstrategien auf Potentialfeldmodelle. PhD thesis, FU Berlin (SFB 267), Berliner Geowissenschaftliche Abhandlungen, Reihe B, Band 28, Berlin, 108 Seiten.Google Scholar
  2. Bosch JHA, Bakker MAJ, Gunnink JL, Paap BF (2009) Airborne electromagnetic measurements as basis for a 3D geological model of an Elsterian incision. Zeitschrift der deutschen Gesellschaft für Geowissenschaften 160(3):249–258CrossRefGoogle Scholar
  3. Burschil T, Scheer W, Kirsch R, Wiederhold H (2012) Compiling geophysical and geological information into a 3D model of the glacially-affected island of Föhr. Hydrol Earth Syst Sci 16:3485–3498CrossRefGoogle Scholar
  4. Christensen NB, Reid JE, Halkjær M (2009) Fast, laterally smooth inversion of airborne time-domain electromagnetic data. Near Surf Geophys 7:599–612Google Scholar
  5. Cox LH, Wilson GA, Zhdanov MS (2012) 3D inversion of airborne electromagnetic data. Geophysics 77(4):WB59-WB69Google Scholar
  6. Eröss RB, Stoll JB, Tezkan B (2013) Three-component VLF using an unmanned aerial system as sensor platform. First Break 31(7):33–41Google Scholar
  7. Gabriel G, Kirsch R, Siemon B, Wiederhold H (2003) Geophysical investigation of buried Pleistocene subglacial valleys in Northern Germany. J Appl Geophys 53:159–180CrossRefGoogle Scholar
  8. Gunnink JL, Bosch JHA, Siemon B, Roth B, Auken E (2012) Combining ground-based and airborne EM through artificial neural networks for modelling hydrogeological units under saline groundwater conditions. Hydrol Earth Syst Sci 16:3061–3074CrossRefGoogle Scholar
  9. Hestenes RM, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Nat Bur Stan 49(6):409–436CrossRefGoogle Scholar
  10. Jørgensen F, Lykke-Anderson H, Sanderson PBE, Auken E, Nørmark E (2003) Geophysical investigations of buried Quaternary valleys in Denmark: an integrated application of transient electromagnetic soundings, reflection seismic surveys and exploratory drillings. J Appl Geophys 53:215–228CrossRefGoogle Scholar
  11. Klimke J, Wiederhold H, Winsemann J, Ertl G, Elbracht J (2013) Three-dimensional mapping of Quaternary sediments improved by airborne electromagnetics in the case of the Quakenbrück Basin, Northern Germany. Zeitschrift der deutschen Gesellschaft für Geowissenschaften 164(2):369–384CrossRefGoogle Scholar
  12. Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2:164–168Google Scholar
  13. Littke R, Bayer U, Gajewski G, Nelskamp S (2008) Dynamics of complex intracontinental basins. The example of the Central European Basin System. Springer, Heidelberg, p 519Google Scholar
  14. Marquardt DW (1963) An algorithm for least-squares estimation of non-linear parameters. SIAM J Appl Math 11:431–441CrossRefGoogle Scholar
  15. Ostermeier A, Gawelezyk A, Hansen N (1994) A derandomized approach to self-adaptation of evolution, strategies. Evol Comput 2(4):369–380CrossRefGoogle Scholar
  16. Paige CC, Saunders MA (1982) LSQR: an algorithm for sparse linear equations and sparse least squares. ACM Trans Math Softw 8(1):43–71CrossRefGoogle Scholar
  17. Rumpel HM, Binot F, Gabriel G, Siemon B, Steuer A, Wiederhold H (2009) The benefit of geophysical data for hydrological 3D modelling—an example using the Cuxhaven buried valley. Zeitung der deutschen Gesellschaft für Geowissenschaften 160(3):259–269CrossRefGoogle Scholar
  18. Scheunert M, Afanasjew M, Börner RU, Einermann M, Ernst OG, Spitzer K (2013) 3D inversion of helicopter electromagnetic data. In: 5th international symposium on three-dimensional electromagnetics, Sapporo, Japan, Extended Abstract, p 4Google Scholar
  19. Schmidt S, Plonka C, Götze HJ, Lahmeyer B (2011) Hybrid modelling of gravity, gravity gradients and magnetic fields. Geophys Prospect 59(6):1046–1051CrossRefGoogle Scholar
  20. Siemon B, Eberle DG, Binot F (2004) Helicopter-borne electromagnetic investigation of coastal aquifers in north-west germany. Zeitschrift für Geologische Wissenschaften 32(5/6):385–395Google Scholar
  21. Siemon B, Auken E, Christiansen AV (2009) Laterally constrained inversion of helicopter-borne frequency-domain electromagnetic data. J Appl Geophys 67(3):259–268CrossRefGoogle Scholar
  22. Siemon B, Steuer A, Ullmann A, Vasterling M, Voß W (2011) Application of frequency-domain helicopter-borne electromagnetics for groundwater exploration in urban areas. Phys Chem Earth, Parts A/B/C 36(16):1373–1385CrossRefGoogle Scholar
  23. Spies BR (1989) Depth of investigation in electromagnetic sounding methods. Geophysics 54:872–888CrossRefGoogle Scholar
  24. Tølbøll RJ (2007) The application of frequency-domain helicopter-borne electromagnetic methods to hydrogeological investigations in Denmark. PhD thesis, Department of Earth Sciences, University of Aarhus, DenmarkGoogle Scholar
  25. Ullmann A, Siemon B, Miensopust M (2013a) Automatic detection and classification of induction anomalies in helicopter-borne electromagnetic data sets. In: 5th international symposium on three-dimensional electromagnetics, Sapporo, Japan, Extended Abstract, p 4Google Scholar
  26. Ullmann A, Siemon B, Scheunert M, Afanasjew M, Börner RU, Spitzer K, Miensopust M, (2013b) Combined 1D and 3D inversion of helicopter-borne electromagnetic data. In: Near surface geoscience, (2013) Bochum, Extended Abstract, Germany, p 5Google Scholar
  27. Viezzoli A, Christiansen AV, Sørensen K (2008) Quasi-3D modelling of airborne TEM data by spatially constrained inversion. Geophysics 73(3):F105–F113CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Hans-Jürgen Götze
    • 1
  • Martin Afanasjew
    • 6
  • Michael Alvers
    • 7
  • Liliana Barrio-Alvers
    • 9
  • Ralph-Uwe Börner
    • 5
  • Christian Brandes
    • 8
  • Rudolf Eröss
    • 3
  • Peter Menzel
    • 1
  • Uwe Meyer
    • 2
  • Mathias Scheunert
    • 5
  • Bernhard Siemon
    • 2
  • Klaus Spitzer
    • 5
  • Dominik Steinmetz
    • 8
  • Johannes Stoll
    • 4
  • Gupta Sudha
    • 3
  • Bülent Tezkan
    • 3
  • Angelika Ullmann
    • 2
  • Jutta Winsemann
    • 8
  1. 1.Institut für GeowissenschaftenChristian-Albrechts-Universität KielKielGermany
  2. 2.Abteilung Grundwasser und BodenBundesanstalt für Geowissenschaften und RohstoffeHannoverGermany
  3. 3.Institut für Geophysik und MeteorologieUniversität zu KölnCologneGermany
  4. 4.Mobile Geophysical TechnologiesCelleGermany
  5. 5.Institut für Geophysik und GeoinformatikTU Bergakademie FreibergFreibergGermany
  6. 6.Institut für Numerische Mathematik und OptimierungTU Bergakademie FreibergFreibergGermany
  7. 7.Transinsight GmbH DresdenDresdenGermany
  8. 8.Institut für GeologieLeibniz Universität HannoverHannoverGermany
  9. 9.Biotechnologie ZentrumTechnische Universität DresdenDresdenGermany

Personalised recommendations