Skip to main content

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSMUFLO))

  • 789 Accesses

Abstract

Understanding the hydrodynamics in the gas–liquid bubble columns with single- or multi-orifice or in the gas–liquid–solid fluidized beds including gas–liquid–solid magnetized fluidized beds is of great importance for process industries but it is still not well known due to the limitations of traditional analysis methods and the complexity of multiphase flow systems themselves [1, 2]. It is interesting to study the bubbling hydrodynamics from the point of view of modern non-linear dynamics [310].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. R. Clift, J.R. Grace, M.E. Weber, Bubbles, Drops and Particles (Academic Press, New York, 1978)

    Google Scholar 

  2. L.S. Fan, K. Tsuchiya, Bubble Wake Dynamics in Liquids and Liquid-Solid Suspensions (Butterworths, Bosten, 1990)

    Google Scholar 

  3. M.Y. Liu (1998) Studies on the Chaos Hydrodynamic Characteristics of Multiphase Reactors. Dissertation, Tianjin University

    Google Scholar 

  4. M.Y. Liu, J.P. Wen, X.Y. Qin, Z.D. Hu, Local chaos characteristics in a self-aspirated reversed flow jet loop reactor. Trans. Tianjin Univ. 14, 56–59 (1998)

    Google Scholar 

  5. M.Y. Liu, J.Y. Wu, Z.D. Hu, Chaos characteristics in a gas-liquid-solid three-phase magnetized fluidized bed. J. Chem. Eng. Chin. Univ. 13, 476–480 (1999)

    Google Scholar 

  6. M.Y. Liu, Z.D. Hu, Chaos analysis of flow regime and regime transition in gas-liquid two-phase bubble columns. Eng. Chem. Metall. 21, 37–43 (2000)

    Google Scholar 

  7. M.Y. Liu, Z.D. Hu, Chaos analyses of flow regime and regime transition in gas-liquid-solid three-phase fluidized beds. Chem. React. Eng. Technol. 16(4), 363–368 (2000)

    MathSciNet  Google Scholar 

  8. M.Y. Liu, J.H. Li, M. Kawauk, Application of the energy-minimization multi-scale method to gas-liquid-solid fluidized beds. Chem. Eng. Sci. 56, 6805–6811 (2001)

    Article  Google Scholar 

  9. M.Y. Liu, Z.D. Hu, Studies on the hydrodynamics of chaotic bubbling in a gas-liquid bubble column with a single orifice. Chem. Eng. Technol. 27, 537–547 (2004)

    Article  MathSciNet  Google Scholar 

  10. M.Y. Liu, J.H. Li, Z.D. Hu, Multi-scale characteristics of chaos behavior in gas-liquid bubble columns. Chem. Eng. Commun. 191, 1003–1016 (2004)

    Article  Google Scholar 

  11. D.J. Tritton, C. Egdell, Chaotic bubbling. Phys. Fluids A 5, 503–505 (1993)

    Article  Google Scholar 

  12. L.J. Mittoni, M.P. Schwarz, R.D. La Nauze, Deterministic chaos in the gas inlet pressure of gas-liquid bubbling systems. Phys. Fluids A 7, 891–893 (1995)

    Google Scholar 

  13. K. Nguyen, C.S. Daw, P. Chakka, M. Cheng, D.D. Bruns, C.E.A. Finney, M.B. Kennell, Spatio-temporal dynamics in a train of rising bubbles. Chem. Eng. J. 64, 191–197 (1996)

    Google Scholar 

  14. H.Z. Li, Y. Mouline, L. Choplin, N. Midoux, Chaotic bubble coalescence in non-Newtonian fluids. Int. J. Multiphas Flow 23, 713–723 (1997)

    Article  MATH  Google Scholar 

  15. M.C. Ruzicka, J. Drahos, J. Zahradnik, N.H. Thomas, Intermittent transition from bubbling to jetting regime in gas-liquid two phase flows. Int. J. Multiphas Flow 23, 671–682 (1997)

    Article  MATH  Google Scholar 

  16. W. Luewisutthichat, A. Tsutsumi, K. Yoshida, Chaotic hydrodynamics of continuous single-bubble flow systems. Chem. Eng. Sci. 52, 3685–3691 (1997)

    Article  Google Scholar 

  17. A. Tufaile, J.C. Sartorelli, Chaotic behavior in bubble formation dynamics. Phys. A 275, 336–346 (2000)

    Article  MathSciNet  Google Scholar 

  18. A. Tufaile, J.C. Sartorelli, Henon-like attractor in air bubble formation. Phys. Lett. A 275, 211–217 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  19. A. Tufaile, M.B. Reyes, J.C. Sartorelli, Explosion of chaotic bubbling. Phys. A 308, 15–24 (2002)

    Article  Google Scholar 

  20. R. Mosdorf, M. Shoji, Chaos in bubbling-nonlinear analysis and modeling. Chem. Eng. Sci. 58, 3837–3846 (2003)

    Article  Google Scholar 

  21. S.U. Sarnobat, S. Rajput, D.D. Bruns, D.W. DePaoli, C.S. Daw, K. Nguyen, The impact of external electrostatic fields on gas–liquid bubbling dynamics. Chem. Eng. Sci. 59, 247–258 (2004)

    Article  Google Scholar 

  22. H.Z. Li, X. Frank, D. Funfschilling, P. Diard, Bubbles’ rising dynamics in polymeric solutions. Phys. Lett. A 325, 43–50 (2004)

    Article  MATH  Google Scholar 

  23. X. Frank, H.Z. Li, Route to chaos in the rising dynamics of a bubble chain in a polymeric fluid. Phys. Lett. A 372, 6155–6160 (2008)

    Article  MATH  Google Scholar 

  24. J.T. Cieslinski, R. Mosdorf, Gas bubble dynamics - experiment and fractal analysis. Int. J. Heat Mass Tran. 48, 1808–1818 (2005)

    Article  Google Scholar 

  25. P. Garstecki, M.J Fuerstman, G.M Whitesides Nonlinear dynamics of a flow-focusing bubble generator: an inverted dripping faucet. Phys. Rev. Lett. 94, 234502-1–234502-4 (2005)

    Google Scholar 

  26. R. Mosdorf, T. Wyszkowski, Experimental investigations of deterministic chaos appearance in bubbling flow. Int. J. Heat Mass Tran. 54, 5060–5069 (2010)

    Article  Google Scholar 

  27. M. Ruzicka, J. Drahos, J. Zahradnik, N.H. Thomas, Structure of gas pressure signal at two-orifice bubbling from a common plenum. Chem. Eng. Sci. 55, 421–429 (2000)

    Article  Google Scholar 

  28. H.M. Letzel, J.C. Schouten, R. Krishna, C.M. van den Bleek, Characterization of regimes and regime transitions in bubble columns by chaos analysis of pressure signals. Chem. Eng. Sci. 52, 4447–4459 (1997)

    Article  Google Scholar 

  29. R. Femat, J.A. Ramirez, A. Soria, Chaotic flow structure in a vertical bubble column. Phys. Lett. A 248, 67–79 (1998)

    Article  Google Scholar 

  30. W. Chen, T. Hasegawa, A. Tsutsumi, K. Otawara, Y. Shigaki, Generalized dynamic modeling of local heat transfer in bubble columns. Chem. Eng. J. 96, 37–44 (2003)

    Article  Google Scholar 

  31. F. Franca, M. Acikgoz, R.T. Lahey, A. Clausse, The use of fractal techniques for flow regime identification. Int. J. Multiphas Flow 17, 545–552 (1991)

    Article  Google Scholar 

  32. A.I. Karamavruc, N.N. Clark, Local differential pressure analysis in a slugging bed using deterministic chaos theory. Chem. Eng. Sci. 52, 357–370 (1997)

    Article  Google Scholar 

  33. D. Bai, E. Shibuya, N. Nakagawa, K. Kato, Fractal characteristics of gas-solids flow in a circulating fluidized bed. Powder Technol. 90, 205–212 (1997)

    Article  Google Scholar 

  34. D. Bai, A.S. Issangya, J.R. Grace, Characteristics of gas-fluidized beds in different flow regimes. Ind. Eng. Chem. Res. 38, 803–811 (1999)

    Article  Google Scholar 

  35. R. Kikuchi, T. Yano, A. Tsutsumi, K. Yoshida, M. Punchochar, J. Drahos, Diagnosis of chaotic dynamics of bubble motion in a bubble column. Chem. Eng. Sci. 52, 3741–3745 (1997)

    Article  Google Scholar 

  36. Y. Kang, Y.J Cho, K.J Woo, K.I Kim, S.D Kim Bubble properties and pressure fluctuations in pressurized bubble columns. Chem. Eng. Sci. 55, 411–419 (2000)

    Google Scholar 

  37. B.R. Bakshi, H. Zhong, P. Jiang, L.S. Fan, Analysis of flow in gas-liquid bubble columns using multi-resolution methods. Trans. IchemE Part A 73, 608–614 (1995)

    Google Scholar 

  38. F. Johnsson, R.C. Zijerveld, J.C. Schouten, C.M. van den Bleek, B. Leckner, Characterization of fluidization regimes by time-series analysis of pressure fluctuations. Int. J. Multiphas Flow 26, 663–715 (2000)

    Article  MATH  Google Scholar 

  39. J.R. van Ommen, S. Sasic, J. van der Schaaf, S. Gheorghiu, F. Johnsson, M.O. Coppens, Time-series analysis of pressure fluctuations in gas–solid fluidized beds – A review. Int. J. Multiphas Flow 37, 403–428 (2011)

    Article  Google Scholar 

  40. C.M. van den Bleek, M.O. Coppens, J.C. Schouten, Application of chaos analysis to multiphase reactors. Chem. Eng. Sci. 57, 4763–4778 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingyan Liu .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Liu, M., Hu, Z. (2014). Introduction. In: Nonlinear Analysis and Prediction of Time Series in Multiphase Reactors. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-04193-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04193-3_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04192-6

  • Online ISBN: 978-3-319-04193-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics