Advertisement

Tracking Human Migration from Online Attention

  • Carmen Vaca-Ruiz
  • Daniele Quercia
  • Luca Maria Aiello
  • Piero Fraternali
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8313)

Abstract

The dynamics behind human migrations are very complex. Economists have intensely studied them because of their importance for the global economy. However, tracking migration is costly, and available data tends to be outdated. Online data can be used to extract proxies for migration flows, and these proxies would not be meant to replicate traditional measurements but are meant to complement them. We analyze a random sample of a microblogging service popular in Brazil (more than 13M posts and 22M reposts) and accurately predict the total number of migrants in 35 Brazilian cities. These results are so accurate that they have promising implications in monitoring emerging economies.

Keywords

Migration Rate Penetration Rate Online Data Migration Flow Social Media Data 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Carmen Vaca Ruiz’s research work has been funded by SENESCYT and ESPOL, Ecuador.

References

  1. 1.
    Asur, S., Huberman, B.A., Szabo, G., Wang, C.: Trends in social media: persistence and decay. In: Proceedings of the 5th AAAI Conference on Weblogs and Social Media (ICWSM) (2011)Google Scholar
  2. 2.
    Baerenholdt, J.O., Granås, B.: Mobility and Place: Enacting Northern European Peripheries. Ashgate Publishing Ltd., Hardcover (2008)Google Scholar
  3. 3.
    Bates, J., Komito, L.: Migration, community and social media. Transnationalism in the Global City, vol. 6. University of Deusto, Bilbao (2012)Google Scholar
  4. 4.
    Boucher, G., Grindsted, A., Vicente, T.L. (eds.): Transnationalism in the Global City. Universidad de Deusto, Bilbao (2012)Google Scholar
  5. 5.
    Brodersen, A., Scellato, S., Wattenhofer, M.: Youtube around the world: geographic popularity of videos. In: Proceedings of the 21st ACM Conference on World Wide Web (WWW) (2012)Google Scholar
  6. 6.
    Cha, M., Haddadi, H., Benevenuto, F., Gummadi, K.: Measuring user influence in twitter: the million follower fallacy. In: Proceedings of the 4th AAAI Conference on Weblogs and Social Media (ICWSM) (2010)Google Scholar
  7. 7.
    Datta, A.: Human Migration: A Social Phenomenon. Mittal Publications, New Delhi (2003)Google Scholar
  8. 8.
    Davis, K.F., D’Odorico, P., Laio, F., Ridolfi, L.: A complex network perspective. PloS One 8(1), e53723 (2013)CrossRefGoogle Scholar
  9. 9.
    Eagle, N., Macy, M., Claxton, R.: Network diversity and economic development. Science 328(5981), 1029–1031 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Favell, A., Feldblum, M., Smith, M.P.: The human face of global obility: a research agenda. Society 44(2), 15–25 (2007)CrossRefGoogle Scholar
  11. 11.
    Ghosh, R., Lerman, K.: Predicting influential users in online social networks. In: Proceedings of the 4th AAAI Conference on Weblogs and Social Media (ICWSM) (2010)Google Scholar
  12. 12.
    Glaeser, E.L., Kohlhase, J.E.: Cities, regions and the decline of transport costs. Reg., Sci. 83(1), 197–228 (2004)Google Scholar
  13. 13.
    Gruhl, D., Guha, R., Kumar, R., Novak, J., Tomkins, A.: The predictive power of online chatter. In: Proceedings of the Eleventh ACM Conference on Knowledge Discovery in Data Mining (KDD) (2005)Google Scholar
  14. 14.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM (JACM) 46(5), 604–632 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Landau, L., Segatti, A.: Contemporary migration to South Africa: a regional development issue. World Bank-free PDF (2011)Google Scholar
  16. 16.
    Lerman, K., Jain, P., Ghosh, R., Kang, J.-H., Kumaraguru, P.: Limited attention and centrality in social networks. In: Proceedings of Conference on Social Intelligence and Technology (SOCIETY) (2013)Google Scholar
  17. 17.
    Mao, H., Shuai, X., Ahn, Y.-Y., Bollen, J.: Mobile communications reveal the regional economy in côte divoire. In: Proceedings of the 3rd Conference on the Analysis of Mobile Phone Datasets (NetMob) (2013)Google Scholar
  18. 18.
    Mejova, Y., Srinivasan, P., Boynton, B.: GOP primary season on twitter: popular political sentiment in social media. In: Proceedings of the Sixth ACM Conference on Web Search and Data Mining (WSDM) (2013)Google Scholar
  19. 19.
    Naaman, M., Becker, H., Gravano, L.: Hip and trendy: characterizing emerging trends on twitter. J. Am. Soc. Inform. Sci. Technol. 62(5), 902–918 (2011)CrossRefGoogle Scholar
  20. 20.
    Naveed, N., Gottron, T., Kunegis, J., Alhadi, A.C.: Bad news travels fast: a content-based analysis of interestingness on twitter. In: Proceedings of the Web of Science Conferece (2011)Google Scholar
  21. 21.
    O’Connor, B., Balasubramanyan, R., Routledge, B.R., Smith, N.A.: From tweets to polls: linking text sentiment to public opinion time series. In: Proceedings of the 4th AAAI Conference on Weblogs and Social Media (ICWSM) (2010)Google Scholar
  22. 22.
    Quercia, D., Ellis, J., Capra, L., Crowcroft, J.: Tracking gross community happiness from tweets. In: Proceedings of the ACM Conference on Computer Supported Cooperative Work (CSCW) (2012)Google Scholar
  23. 23.
    Romero, D.M., Galuba, W., Asur, S., Huberman, B.A.: Influence and passivity in social media. In: Gunopulos, D., Hofmann, T., Malerba, D., Vazirgiannis, M. (eds.) ECML PKDD 2011, Part III. LNCS, vol. 6913, pp. 18–33. Springer, Heidelberg (2011)Google Scholar
  24. 24.
    Ruiz, E.J., Hristidis, V., Castillo, C., Gionis, A., Jaimes, A.: Correlating financial time series with micro-blogging activity. In: Proceedings of the Fifth ACM International Conference on Web Search and Data Mining (WSDM) (2012)Google Scholar
  25. 25.
    Scellato, S., Mascolo, C., Musolesi, M., Latora, V.: Distance matters: geo-social metrics for online social networks. In: Proceedings of the 3rd Conference on Online Social Networks (WOSN) (2010)Google Scholar
  26. 26.
    State, W.I., Bogdan, E.Z., et al.: Studying inter-national mobility through ip geolocation. In: Proceedings of the Sixth ACM Conference on Web Search and Data Mining (WSDM) (2013)Google Scholar
  27. 27.
    Taylor, P.J., Ni, P., Derudder, B., Hoyler, M., Huang, J., Lu, F., Pain, K., Witlox, F., Yang, X., Bassens, D., et al.: Measuring the world city network: new developments and results. GaWC Res. Bull. 300 (2009)Google Scholar
  28. 28.
    Tumasjan, A., Sprenger, T.O., Sandner, P.G., Welpe, I.M.: Predicting elections with twitter: what 140 characters reveal about political sentiment. In: Proceedings of the 4th AAAI Conference on Weblogs and Social Media (ICWSM) (2010)Google Scholar
  29. 29.
    UN. Big Data for Development: A Primer. United Nations, Global Pulse (2013)Google Scholar
  30. 30.
    Ver Steeg, G., Galstyan, A.: Information transfer in social media. In: Proceedings of the 21st ACM Conference on World Wide Web (WWW) (2012)Google Scholar
  31. 31.
    Wellman, B., Haase, A., Witte, J., Hampton, K.: Does the Internet Increase, Decrease, or Supplement Social Capital? Social Networks, Participation, and Community Commitment (2001)Google Scholar
  32. 32.
    Weng, J., Lim, E., Jiang, J., He, Q.: Twitterrank: finding topic-sensitive influential twitterers. In: Proceedings of the Third ACM Conference on Web Search and Data Mining (WSDM) (2010)Google Scholar
  33. 33.
    Weng, L., Flammini, A., Vespignani, A., Menczer, F.: Competition among memes in a world with limited attention. Sci. Rep. 2(335), 1–8 (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Carmen Vaca-Ruiz
    • 1
    • 2
  • Daniele Quercia
    • 2
  • Luca Maria Aiello
    • 2
  • Piero Fraternali
    • 1
  1. 1.Politecnico di MilanoMilanItaly
  2. 2.Yahoo ResearchBarcelonaSpain

Personalised recommendations