Skip to main content

Basic Notions on Mobility Function

  • Chapter
  • First Online:
Comprehensive Anatomy of Motor Functions
  • 2165 Accesses

Abstract

Bones, joints and muscles are the components of the motor apparatus, and their construction can be understood by referring to the basic principles of biomechanics. A bone mineralisation servomechanism explains the plasticity of the system in relation with the specific role of mechanical compression factors applied to the skeleton and generates a piezoelectric microcurrent that stimulates the osteocytes. This mechanism also acts as the technical support for bone regeneration in case of fracture. The joints can be classified in two categories: immobile, like cranial sutures, and mobile, like the intervertebral amphiarthrosis and all the diathroses with different types depending on the articular surface shape and synthesis means. Muscles are viscoelastic actuators, non-reversible and non-linear able to create forces by shortening their contractile part no more than the third of their length which explains the particular mode of construction of the diverse mobile body segments. Command and control of muscles are of great clinical interest. The motor part concerns the functional “motor unit” corresponding to the number of muscular fibres activated in on/off mode by a motoneuron with a variable recruitment explaining a possible proportional control. The sensitive part (proprioception) is given by two transducers: the muscle spindles measure the stiffness of a muscle in order to detect their three different states—relaxed, contracted, stretched—and the Golgi organs measure the force. The position and movement control require a goniometric information given by the skin, thanks to the Ruffini transducers. The conscious and voluntary mobility control applies to movements and not to muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rabischong P (2003) Le programme homme. PUF, Paris

    Google Scholar 

  2. Kapandji AI (2011) Qu’est-ce que la BIOMECANIQUE? Sauramps Medical, Montpellier

    Google Scholar 

  3. Kapandji IA (2009) Physiologie articulaire : Tome I Membre supérieur Tome II Membre inférieur Tome III Tête et rachis. 6e Edit. Maloine S.A.

    Google Scholar 

  4. Dufour M, Pillu M (2006) Biomécanique Fonctionnelle: membres, tête, tronc. Elsevier Masson S.A.S.

    Google Scholar 

  5. Martin RB (1991) Determinants of mechanical properties of bones. J Biomech 24(Suppl 1):79–88

    Article  PubMed  Google Scholar 

  6. Cheng X (1997) Assessment of human vertebral strength: relationships to bone mass and trabecular microstructure in vitro. Acta Biomedica Lovaniensia 147, Leuven University Press, Leuven

    Google Scholar 

  7. Rabischong P, Konirsch G, Avril J (1964) Etude biomécanique du tissu osseux compact des os longs en fonction de leur structure. Bull Ass Anat:1:1359–1387.

    Google Scholar 

  8. Goldstein SA (1987) The mechanical properties of trabecular bone: dependence on anatomic location and function. J Biomech 20:1055–1061

    Article  CAS  PubMed  Google Scholar 

  9. Galante J, Rostoker W, Ray RD (1970) Physical properties of trabecular bone. Calcif Tissue Res 5:327–330

    Article  Google Scholar 

  10. Ashman RB, Corin JD, Turner CH (1987) Elastic properties of cancellous bone: measurement by an ultrasonic technique. J Biomech 20:979–986

    Article  CAS  PubMed  Google Scholar 

  11. Gibson LJ (1985) The mechanical behaviour of cancellous bone. J Biomech 18:317–328

    Article  CAS  PubMed  Google Scholar 

  12. Evans JA, Takakoli MB (1990) Ultrasonic attenuation and velocity in bone. Phys Med Biol 35:1387–1396

    Article  CAS  PubMed  Google Scholar 

  13. Evans FG (1958) Relations between the microscopic structure and tensile strength of human bone. Acta Anat 35:285–301

    Article  CAS  PubMed  Google Scholar 

  14. Amling M, Herden S, Pösl M et al (1996) Heterogeneity of the skeleton: comparison of the trabecular microarchitecture of the spine, the iliac crest, the femur, and the calcaneus. J Bone Miner Res 11:36–45

    Article  CAS  PubMed  Google Scholar 

  15. Mizrahi J, Silva MJ, Keaveny TM et al (1993) Finite-element stress analysis of the normal and osteoporotic lumbar vertebral body. Spine 18:2088–2096

    Article  CAS  PubMed  Google Scholar 

  16. Rabischong P, Louis R, Vignaud J et al (1978) Le disque intervertébral. Anat Clin 1:55–64

    Article  Google Scholar 

  17. Shirazi-Adl SA, Shrivastava SC, Ahmed AM (1984) Stress analysis of the lumbar disc-body unit in compression. Spine 9:120–134

    Article  CAS  PubMed  Google Scholar 

  18. White RK (1963) The rheology of synovial fluid. J Bone Joint Surg Am 45-A:1084–1090

    Google Scholar 

  19. Barnett CH, Cobbold AF (1962) Lubrication within living joints. J Bone Joint Surg 44-B:662–674

    Google Scholar 

  20. Clarke IC (1971) Surface characteristics of human articular cartilage. A scanning electron microscope study. J Anat 108:23–30

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Bayourthe VP, Anklewicz J (1972) La lubrification articulaire. Rhumat Tome XXIV 8:55–74

    Google Scholar 

  22. Guimberteau JC (2004) Strolling under the skin. Elsevier S.A.S.

    Google Scholar 

  23. Bonnel F, Marc T, et al (2009) Le muscle, nouveaux concepts: anatomie, biomécanique, chirurgie, rééducation. Sauramps Medical

    Google Scholar 

  24. Winckler G (1964) Les aspects morphologiques de l'innervation des muscles striés. Arch Biol 75:943–973

    Google Scholar 

  25. Julia M, Hirt D, Perrey S, et al (2012) La proprioception. AMPR, Sauramps Medical

    Google Scholar 

  26. Rabischong P (1962) L'innervation proprioceptive des muscles lombricaux de la main chez l'homme. Rev Chir Orthop 48(3):234–244

    CAS  PubMed  Google Scholar 

  27. Rabischong P (1961) Recherches sur la morphologie et la répartition des organes neurotendineux et des récepteurs épitendineux et intramusculaires encapsulés dans les muscles lombricaux de l'homme. Arch d'Anat, d'Histo et d'Embryo XLIV 5/8:329–349

    Google Scholar 

  28. Roll JP, Vedel JP (1982) Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography. Exp Brain Res 47:177–190

    Article  CAS  PubMed  Google Scholar 

  29. Halata Z (1988) Ruffini corpuscle – a stretch receptor in the connective tissue of the skin and locomotor apparatus. Prog Brain Res 74:221–229

    Article  CAS  PubMed  Google Scholar 

  30. Halata Z (1977) The ultrastructure of the sensory nerve endings in the articular capsule of the knee joint of the domestic cat (Ruffini corpuscles and Pacinian corpuscles). J Anat 124:717–729

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Iggo A (1982) Cutaneous sensory mechanism. In: Barlow HB, Mollon JD (eds) The Senses. Cambridge University Press, Cambridge, pp 369–406

    Google Scholar 

  32. Vallar G (1998) Spatial hemineglect in humans. Trends Cogn Sci 2(3):87–97

    Article  CAS  PubMed  Google Scholar 

  33. Verdon V, Schwartz S, Lovblad KO et al (2010) Neuroanatomy of hemispatial neglect and its functional components: a study using voxel-based lesion-symptom mapping. Brain 133(3):880–894

    Article  PubMed  Google Scholar 

  34. Bossy J (1990) Anatomie clinique, neuroanatomie. Springer, Paris

    Google Scholar 

  35. Martin JH (2012) Neuroanatomy text and atlas. McGraw Hill, New York

    Google Scholar 

  36. Heimert L (1983) The human brain and spinal cord. Springer, New York

    Book  Google Scholar 

  37. Nieuwenhuys R, Voogd J, van Huijzen C (2008) Human central nervous system, 4th edn. Springer, Heidelberg

    Google Scholar 

  38. Rabischong P (2004) Comprehensive anatomy of the spinal cord. Riv Neuroradiol 17:268–276

    Google Scholar 

  39. Duvernoy H (1999) The human brain. Surface, blood supply and three-dimensional sectional anatomy, 2nd edn. Springer, Wien NewYork

    Google Scholar 

  40. Marieb EN (1992) Anatomie et physiologie humaine. DeBoeck, Canada

    Google Scholar 

  41. Catani M, Thiebaut de Schotten M (2012) Atlas of human brain connections. Oxford University Press, Oxford

    Book  Google Scholar 

  42. Tortora GJ, Derrickson B (2006) Principles of anatomy and physiology. Wiley, Hoboken, NJ

    Google Scholar 

  43. Moore KL, Dalley AF, Agur AMR (2010) Clinically oriented anatomy. Wolters Kluwer/Lippincott Williams and Wilkins, Philadelphia, PA

    Google Scholar 

  44. Rabischong P (2012) The skin neural interface. In: Ajeena IM (ed) Advances in clinical neurophysiology. InTech

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rabischong, P. (2014). Basic Notions on Mobility Function. In: Comprehensive Anatomy of Motor Functions. Springer, Cham. https://doi.org/10.1007/978-3-319-04169-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04169-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04168-1

  • Online ISBN: 978-3-319-04169-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics