Skip to main content

Weak Monoidal DB Topos

  • Chapter
  • 3907 Accesses

Part of the book series: Texts in Computer Science ((TCS))

Abstract

Chapter 9 considers the topological properties of the DB category: the database metric space, its Subobject classifier, and we demonstrate that DB is a weak monoidal topos. It is shown that DB is monoidal biclosed, finitely complete and cocomplete, locally small and locally finitely presentable category with hom-objects (“exponentiations”) and a subobject classifier. It is well known that the intuitionistic logic is a logic of an elementary (standard) topos. However, we obtain that DB is not an elementary, but a weak monoidal topos. We obtain that in the specific case when the universe of database values is a finite set this logic corresponds to the standard propositional logic. This is the case when the database-mapping system is completely specified by the FOL. However, in the case when we deal with incomplete information and hence we obtain the SOtgds with existentially quantified Skolem functions and our universe must include the infinite set of distinct Skolem constants (for recursive schema-mapping or schema integrity constraints), our logic is then an intermediate or superintuitionistic logic in which the weak excluded middle formula ¬ϕ∨¬¬ϕ is valid. Thus, this weak monoidal topos of DB has more theorems than intuitionistic logic but less than the standard propositional logic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N.D. Belnap, A useful four-valued logic, in Modern Uses of Multiple-Valued Logic, ed. by J.-M. Dunn, G. Epstein (D. Reidel, Dordrecht, 1977)

    Google Scholar 

  2. G. Birkhoff, Lattice Theory. Amer. Math. Soc. Colloquium Publications, vol. XXV (1940). Reprinted 1979

    Google Scholar 

  3. A. Chagrov, M. Zakharyashev, Modal Logic. Oxford Logic Guides, vol. 35 (Oxford University Press, Oxford, 1997)

    MATH  Google Scholar 

  4. D. de Jongh, A.S. Troelstra, On the connection of partially ordered sets with some pseudo-Boolean algebras. Indag. Math. 28, 317–329 (1966)

    Google Scholar 

  5. S. Eilenberg, G.M. Kelly, Closed categories, in Proceedings of the Conference on Categorical Algebra, La Jolla, 1965 (Springer, Berlin, 1966), pp. 421–562

    Chapter  Google Scholar 

  6. M.C. Fitting, Bilattices and the semantics of logic programming. J. Log. Program. 11, 91–116 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  7. M. Ginsberg, Multivalued logics: a uniform approach to reasoning in artificial intelligence. Comput. Intell. 4, 265–316 (1988)

    Article  Google Scholar 

  8. R. Goldblat, Topoi: The Categorial Analysis of Logic (North-Holland, Amsterdam, 1979)

    Google Scholar 

  9. V.A. Jankov, Ob ischislenii slabogo zakona iskljuchennogo tret’jego. Izv. Akad. Nauk SSSR, Ser. Mat. 32(5), 1044–1051 (1968)

    MATH  MathSciNet  Google Scholar 

  10. S.A. Kripke, Semantical analysis of intuitionistic logic I, in Formal Systems and Recursive Functions, ed. by J.N. Crossley, M.A.E. Dummett (North Holland, Amsterdam, 1965), pp. 92–130

    Chapter  Google Scholar 

  11. S.M. Lane, T. Moerdijk, Sheaves in Geometry and Logic: A First Introduction to Topos Theory (Springer, Berlin, 1991)

    Google Scholar 

  12. F.W. Lawvere, Introduction, in Toposes, Algebraic Geometry and Logic. Lecture Notes in Mathematics, vol. 274 (Springer, Berlin, 1972)

    Google Scholar 

  13. W. Lawvere, Metric spaces, generalized logic, and closed categories, in Rendiconti del Seminario Matematico e Fisico di Milano, XLIII (Tipografia Fusi, Pavia, 1973)

    Google Scholar 

  14. C.I. Lewis, Implication and the algebra of logic. Mind 21, 522–531 (1912)

    Article  Google Scholar 

  15. S. Maclane, Sets, topoi, and internal logic in categories, in Logic Colloquium 1973, ed. by H.E. Rose, J.C. Shepherdson (North-Holland, Amsterdam, 1975), pp. 119–134

    Google Scholar 

  16. Z. Majkić, Autoreferential semantics for many-valued modal logics. J. Appl. Non-Class. Log. 18(1), 79–125 (2008)

    Article  MATH  Google Scholar 

  17. Z. Majkić, Bilattices, intuitionism and truth-knowledge duality: concepts and foundations. J. Mult.-Valued Log. Soft Comput. 14(6), 525–564 (2008)

    MATH  Google Scholar 

  18. Z. Majkić, A new representation theorem for many-valued modal logics. arXiv:1103.0248v1 (2011), 01 March, pp. 1–19

  19. R. Paré, C0-limits in topoi. Bull. Am. Math. Soc. 80, 556–561 (1974)

    Article  MATH  Google Scholar 

  20. L. Pinto, R. Duckhoff, Loop-free construction of counter-models for intuitionistic propositional logic, in Symposia Gausianna Conference, New York (1995), pp. 225–232

    Google Scholar 

  21. H. Rasiowa, R. Sikorski, The Mathematics of Metamathematics, 3rd edn. (PWN-Polisch Scientific Publishers, Warsaw, 1970)

    Google Scholar 

  22. G. Servi, On modal logics with an intuitionistic base. Stud. Log. 36, 141–149 (1977)

    Article  MATH  Google Scholar 

  23. V.B. Sheltman, Kripke type semantics for propositional modal logics with intuitionistic base, in Modal and Tense Logics, Institute of Philosophy, USSR Academy of Sciences (1979), pp. 108–112

    Google Scholar 

  24. M. Tierney, Sheaf theory and the continuum hypothesis, in Lecture Notes in Mathematics, vol. 274 (Springer, Berlin, 1972)

    Google Scholar 

  25. J. Underwood, A constructive completeness proof for the intuitionistic propositional calculus, in Proc. of Second Workshop on Theorem Proving and Analytic Tableaux and Related Methods, Marselle, France, April (1993)

    Google Scholar 

  26. F. Wolter, M. Zakharyaschev, On the relation between intuitionistic and classical modal logics. Algebra Log. 62, 73–92 (1997)

    Article  MathSciNet  Google Scholar 

  27. F. Wolter, M. Zakharyaschev, Intuitionistic modal logics as fragments of classical bimodal logics, in Logic at Work, ed. by E. Orlowska (Springer, Berlin, 1999), pp. 168–186

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Majkić, Z. (2014). Weak Monoidal DB Topos. In: Big Data Integration Theory. Texts in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-04156-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04156-8_9

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04155-1

  • Online ISBN: 978-3-319-04156-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics