A Fuzzy Decision Support System for the Environmental Risk Assessment of Genetically Modified Organisms

  • Francesco Camastra
  • Angelo Ciaramella
  • Valeria Giovannelli
  • Matteo Lener
  • Valentina Rastelli
  • Antonino Staiano
  • Giovanni Staiano
  • Alfredo Starace
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 26)

Abstract

Aim of the paper is the development of a Fuzzy Decision Support System (FDSS) for the Environmental Risk Assessment (ERA) of the deliberate release of genetically modified plants. The evaluation process permits identifying potential impacts that can achieve one or more receptors through a set of migration paths. ERA process is often performed in presence of incomplete and imprecise data and is generally yielded using the personal experience and knowledge of the human experts. Therefore the risk assessment in the FDSS is obtained by using a Fuzzy Inference System (FIS), performed using jFuzzyLogic library. The decisions derived by FDSS have been validated on real world cases by the human experts that are in charge of ERA. They have confirmed the reliability of the fuzzy support system decisions.

Keywords

Fuzzy Decision Support Systems Risk Assessment Genetically Modified Organisms Fuzzy Control Language jFuzzyLogic library 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen, Y.-L., Weng, C.-H.: Mining fuzzy association rules from questionnaire data. Knowledge-Based Systems 22, 46–56 (2009)CrossRefGoogle Scholar
  2. 2.
    Chen, Z., Zhao, L., Lee, K.: Environmental risk assessment of offshore produced water discharges using a hybrid fuzzy-stochastic modeling approach. Environmental Modelling & Software 25, 782–792 (2010)CrossRefGoogle Scholar
  3. 3.
    Ciaramella, A., Tagliaferri, R., Pedrycz, W.: The genetic development of ordinal sums. Fuzzy Sets and Systems 151(2), 303–325 (2005)CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Cingolani, P., A.-Fdez, J.: jFuzzyLogic: A Robust and Flexible Fuzzy-Logic Inference System Language Implementation. In: Proceedings of IEEE World Congress on Computational Intelligence 2012, June 10-15 (2012)Google Scholar
  5. 5.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. MIT Press (2009)Google Scholar
  6. 6.
    Davidson, V.J., Ryks, J., Fazil, A.: Fuzzy risk assessment tool for microbial hazards in food systems. Fuzzy Sets and Systems 157, 1201–1210 (2006)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Guimara, A.C.F., Lapa, C.M.F.: Fuzzy inference to risk assessment on nuclear engineering systems. Applied Soft Computing 7, 17–28 (2007)CrossRefGoogle Scholar
  8. 8.
    Kahraman, C., Kaya, I.: Fuzzy Process Accuracy Index to Evaluate Risk Assessment of Drought Effects in Turkey. Human and Ecological Risk Assessment 15, 789–810 (2009)CrossRefGoogle Scholar
  9. 9.
    Karimi, I., Hullermeier, E.: Risk assessment system of natural hazards: A new approach based on fuzzy probability. Fuzzy Sets and Systems 158, 987–999 (2007)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    International Electrotechnical Commission technical committee industrial process measurement and control2. IEC 61131 - Programmable Controllers. Part 7: Fuzzy Control Programming. IEC (2000)Google Scholar
  11. 11.
    Lener, M., Giovannelli, V., Arpaia, S., Baldacchino, F., Benedetti, A., Burgio, G., Canfora, L., Dinelli, G., Manachini, B., Marotti, I., Masetti, A., Sbrana, C., Rastelli, V., Staiano, G.: Applying an operating model for the environmental risk assessment in Italian Sites of Community Importance (SCI) of the European Commission Habitats Directive (92/43/EEC). Bulletin of Insectology 66(2), 257–267 (2013)Google Scholar
  12. 12.
    Li, W., Zhou, J., Xie, K., Xiong, X.: Power System Risk Assessment Using a Hybrid Method of Fuzzy Set and Monte Carlo Simulation. IEEE Transactions on Power Systems 23(2) (2008)Google Scholar
  13. 13.
    Lin, C.-T., Lee, C.S.: Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems. Prentice Hall (1996)Google Scholar
  14. 14.
    Ngai, E.W.T., Wat, F.K.T.: Design and development of a fuzzy expert system for hotel selection. Omega 31, 275–286 (2003)CrossRefGoogle Scholar
  15. 15.
    Parr, T.J., Quong, R.W.: Software: Practice and Experience, vol. 25(7), pp. 789–810. Wiley & Sons (1995)Google Scholar
  16. 16.
    Sadiqa, R., Husain, T.: A fuzzy-based methodology for an aggregative environmental risk assessment: a case study of drilling waste. Environmental Modelling & Software 20, 33–46 (2005)CrossRefGoogle Scholar
  17. 17.
    Sorlini, C., Buiatti, M., Burgio, G., Cellini, F., Giovannelli, V., Lener, M., Massari, G., Perrino, P., Selva, E., Spagnoletti, A., Staiano, G.: La valutazione del rischio ambientale dell’ immissione deliberata nell’ ambiente di organismi geneticamente modificati. Tech. Report (2003), http://bch.minambiente.it/EN/Biosafety/propmet.asp (in Italian)
  18. 18.
    Wang, Y.-M., Elhag, T.M.S.: An adaptive neuro-fuzzy inference system for bridge risk assessment. Expert Systems with Applications 34, 3099–3106 (2008)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Francesco Camastra
    • 1
  • Angelo Ciaramella
    • 1
  • Valeria Giovannelli
    • 2
  • Matteo Lener
    • 2
  • Valentina Rastelli
    • 2
  • Antonino Staiano
    • 1
  • Giovanni Staiano
    • 2
  • Alfredo Starace
    • 1
  1. 1.Dept. of Applied ScienceUniversity of Naples “Parthenope”NapoliItaly
  2. 2.Nature Protection Dept.Institute for Environmental Protection and Research (ISPRA)RomaItaly

Personalised recommendations