Advertisement

Multi-Country Mortality Analysis Using Self Organizing Maps

Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 26)

Abstract

In this paper we introduce the use of Self Organizing Maps (SOMs) in multidimensional mortality analysis. The rationale behind this contribution is that patterns of mortality in different areas of the world are becoming more and more related; a fast and intuitive method understanding the similarities among mortality experiences could therefore be of aid to improve the knowledge on this complex phenomenon. The results we have obtained highlight common features in the mortality experience of various countries, hence supporting the idea that SOM may be a very effective tool in this field.

Keywords

Clustering Mortality Self Organizing Maps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cairns, A.J.G., Blake, D., Dowd, K., Coughlan, G.D., Khalaf-Allah, M.: Bayesian Stochastic Mortality Modelling for Two Populations. ASTIN Bull. 41(1), 29–59 (2011)MathSciNetGoogle Scholar
  2. 2.
    Deboeck, G., Kohonen, T.: Visual Explorations in Finance: with Self-Organizing Maps. Springer Finance, New York (1998)CrossRefMATHGoogle Scholar
  3. 3.
    Fiig Jarner, S., Masotty Kryger, E.: Modelling adult mortality in small populations: the Saint model. Pensions Institute Discussion Paper PI-0902 (2009)Google Scholar
  4. 4.
    Hatzopoulos, P., Haberman, S.: A parameterized approach to modelling and forecasting mortality. Insur.: Math. and Econ. 44(1), 103–123 (2009)MATHMathSciNetGoogle Scholar
  5. 5.
    Hatzopoulos, P., Haberman, S.: Common mortality modeling and coherent forecasts. An empirical analysis of worldwide mortality data. Insur.: Math. and Econ. 52, 320–337 (2013)MathSciNetGoogle Scholar
  6. 6.
    Kaski, S., Kangas, J., Kohonen, T.: Bibliography of Self-Organizing Map (SOM) Papers: 1981-1997. Neur. Comp. Surveys 1, 102–350 (1998)Google Scholar
  7. 7.
    Kohonen, T.: Self-Organizing Maps, 3rd extended edn. Springer, Berlin (2001)Google Scholar
  8. 8.
    Li, N., Lee, R.: Coherent mortality forecasts for a group of populations: An extension of the Lee-Carter method. Demography 42(3), 575–594 (2005)CrossRefGoogle Scholar
  9. 9.
    Martn, B., Serrano Cinca, C.: Self Organizing Neural Networks for the Analysis and Representation of Data: some Financial Cases. Neu. Comp. & Appl. 1(2), 193–206 (1993)CrossRefGoogle Scholar
  10. 10.
    Montefiori, M., Resta, M.: A computational approach for the health care market. Health Care Man. Sc. 12(4), 344–350 (2009)CrossRefGoogle Scholar
  11. 11.
    Oja, M., Kaski, S., Kohonen, T.: Bibliography of Self-Organizing Map (SOM) Papers: 1998-2001 Addendum. Neur. Comp. Surveys 3, 1–156 (2003)Google Scholar
  12. 12.
    Polla, M., Honkela, T., Kohonen, T.: Bibliography of Self-Organizing Map (SOM) Papers: 2002-2005 Addendum. TKK Reports in Information and Computer Science, Helsinki University of Technology, Report TKK-ICS-R23 (2009)Google Scholar
  13. 13.
    Resta, M.: Early Warning Systems: an approach via Self Organizing Maps with applications to emergent markets. In: Proc. of the 2009 Conference on New Directions in Neural Networks: 18th Italian Workshop on Neural Networks, WIRN 2008, pp. 176–184. IOS Press, Amsterdam (2009)Google Scholar
  14. 14.
    Resta, M.: Assessing the efficiency of Health Care Providers: A SOM perspective. In: Laaksonen, J., Honkela, T. (eds.) WSOM 2011. LNCS, vol. 6731, pp. 30–39. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Resta, M., Ravera, M.: A model for mortality forecasting based on Self Organizing Maps. In: Estevez, P.A., Principe, J.C., Zegers, P. (eds.) Advances in Self-Organizing Maps. AISC, vol. 198, pp. 335–343. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  16. 16.
    Tuljapurkar, S., Li, N., Boe, C.: A universal pattern of mortality decline in the G7 countries. Nature 40, 789–792 (2000)CrossRefGoogle Scholar
  17. 17.
    White, K.M.: Longevity Advances in High-income Countries, 1955-96. Pop. and Dev. Rev. 28, 59–76 (2002)CrossRefGoogle Scholar
  18. 18.
    Wilson, C.: On the Scale of Global Demographic Convergence 19502000. Pop. and Dev. Rev. 24, 593–600 (2001)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of EconomicsUniversity of GenoaGenovaItaly

Personalised recommendations