A Collaborative Filtering Recommender Exploiting a SOM Network

  • Giuseppe M. L. Sarnè
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 26)


Recommender systems are exploited in many fields for helping users to find goods and services. A collaborative filtering recommender realizes a knowledge-sharing system to find people having similar interests. However, some critical issues may lead to inaccurate suggestions. To provide a solution to such problems, this paper presents a novel SOM-based collaborative filtering recommender. Some experimental results confirm the effectiveness of the proposed solution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Braak, P., Abdullah, N., Xu, Y.: Improving the Performance of Collaborative Filtering Recommender Systems through User Profile Clustering. In: Proc. IEEE/WIC/ACM Int. Joint Conf. on Web Intelligence and Intelligent Agent Technologies, 2009, pp. 147–150. IEEE (2009)Google Scholar
  2. 2.
    Breese, J., Heckerman, D., Kadie, C.: Empirical Analysis of Predictive Algorithms for Collaborative Filtering. In: Proc. 14th Int. Conf. on Uncertainty in Artificial Intelligence, pp. 43–52. Morgan Kaufmann (1998)Google Scholar
  3. 3.
    Buccafurri, F., Palopoli, L., Rosaci, D., Sarné, G.M.L.: Modeling Cooperation in Multi-Agent Communities. Cognitive Systems Research 5(3), 171–190 (2004)CrossRefGoogle Scholar
  4. 4.
    Burke, R.D.: Hybrid Recommender Systems: Survey and Experiments. UMUAI 12(4), 331–370 (2002)MATHGoogle Scholar
  5. 5.
    Castro-Schez, J.J., Miguel, R., Vallejo, D., López-López, L.M.: A Highly Adaptive Recommender System Based on Fuzzy Logic for B2C e-Commerce Portals. Expert Systems with Applications 38(3), 2441–2454 (2011)CrossRefGoogle Scholar
  6. 6.
    De Meo, P., Rosaci, D., Sarnè, G.M.L., Terracina, G., Ursino, D.: EC-XAMAS: Supporting e-Commerce Activities by an XML-Based Adaptive Multi-Agent System. Applied Artificial Intelligence 21(6), 529–562 (2007)CrossRefGoogle Scholar
  7. 7.
    Draidi, F., Pacitti, E., Kemme, B.: P2Prec: A P2P Recommendation System for Large-Scale Data Sharing. In: Hameurlain, A., Küng, J., Wagner, R. (eds.) TLDKS III. LNCS, vol. 6790, pp. 87–116. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Garruzzo, S., Rosaci, D., Sarné, G.M.L.: ISABEL: A Multi Agent e-Learning System That Supports Multiple Devices. In: Proc. of the 2007 Int. Conf. on Intel. Agent Technology (IAT 2007), pp. 485–488. IEEE (2007)Google Scholar
  9. 9.
    Hofmann, T.: Latent Semantic Models for Collaborative Filtering. ACM Transaction on Information Systems 22(1), 89–115 (2004)CrossRefGoogle Scholar
  10. 10.
    Hoseini, E., Hashemi, S., Hamzeh, A.: SPCF: a Stepwise Partitioning for Collaborative Filtering to Alleviate Sparsity Problems. Journal of Information Science 38(2), 578–592 (2012)CrossRefGoogle Scholar
  11. 11.
    Jogalekar, P., Woodside, M.: Evaluating the Scalability of Distributed Systems. IEEE Trans. Parallel Distributed Systems 11(6), 589–603 (2000)CrossRefGoogle Scholar
  12. 12.
    Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer (2001)Google Scholar
  13. 13.
    Konstan, J., Riedl, J.: Recommender Systems: from Algorithms to User Experience. User Modeling and User-Adapted Interaction 22(1), 101–123 (2012)CrossRefGoogle Scholar
  14. 14.
    Lee, M., Choi, P., Woo, Y.: A hybrid recommender system combining collaborative filtering with neural network. In: De Bra, P., Brusilovsky, P., Conejo, R. (eds.) AH 2002. LNCS, vol. 2347, pp. 531–534. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  15. 15.
    Lops, P., Gemmis, M., Semeraro, G.: Content-based Recommender Systems: State of the Art and Trends. In: Recommender Systems Hand, pp. 73–105. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  16. 16.
    Miller, B.N., Konstan, J.A., Riedl, J.: PocketLens: Toward a Personal Recommender System. ACM Transaction on Information Systems 22(3), 437–476 (2004)CrossRefGoogle Scholar
  17. 17.
    Mobasher, B., Dai, H., Luo, T., Nakagawa, M.: Discovery and Evaluation of Aggregate Usage Profiles for Web Personalization. Data Mining Knowledge Discovery 6, 61–82 (2002)CrossRefMathSciNetGoogle Scholar
  18. 18.
    Olson, T.: Bootstrapping and Decentralizing Recommender Systems. Ph.D. Thesis, Dept. of Information Technology, Uppsala Univ. (2003)Google Scholar
  19. 19.
    Palopoli, L., Rosaci, D., Sarné, G.M.L.: A Multi-tiered Recommender System Architecture for Supporting e-Commerce. In: Fortino, G., Badica, C., Malgeri, M., Unland, R. (eds.) IDC 2012. SCI, vol. 446, pp. 71–80. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Palopoli, L., Rosaci, D., Sarné, G.M.L.: Introducing Specialization in e-Commerce Recommender Systems. Concurrent Engineering: Research and Applications 21(3), 187–196 (2013)CrossRefGoogle Scholar
  21. 21.
    Parsons, J., Ralph, P., Gallagher, K.: Using Viewing Time to Infer User Preference in Recommender Systems. In: AAAI Work. on Semantic Web Personalization, pp. 52–64. AAAI (2004)Google Scholar
  22. 22.
    Pham, M.C., Cao, Y., Klamma, R., Jarke, M.: A Clustering Approach for Collaborative Filtering Recommendation Using Social Network Analysis. Journal of Universal Computer Scienc 17(4), 583–604 (2011)Google Scholar
  23. 23.
    Postorino, M.N., Sarné, G.M.L.: Cluster analysis for road accidents investigations. In: Advances in Transport - Proc. of Urban Transport VIII, Urban Transport and the Environment in the 21st Century, 2002, pp. 785–794. WIT Press (2002)Google Scholar
  24. 24.
    Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., Riedl, J.: GroupLens: an Open Architecture for Collaborative Filtering of Netnews. In: Proc. 1994 ACM Conf. on Computer Supported Cooperative. Work, pp. 175–186. ACM (1994)Google Scholar
  25. 25.
    Roh, T.H., Oh, K.J., Han, I.: The collaborative filtering recommendation based on som cluster-indexing cbr. Expert Systems with App. 25(3), 413–423 (2003)CrossRefGoogle Scholar
  26. 26.
    Rosaci, D., Sarné, G.M.L.: Supporting Evolution in Learning Information Agents. In: Proc. of the 12th Work. on Objects and Agents. CEUR Workshop Proceedings, vol. 741, pp. 89–94. (2011)Google Scholar
  27. 27.
    Rosaci, D., Sarnè, G.M.L.: Efficient Personalization of e-Learning Activities Using a Multi-Device Decentralized Recommender System. Computational Intelligence 26(2), 121–141 (2010)CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Rosaci, D., Sarnè, G.M.L.: Cloning Mechanisms to Improve Agent Performances. Journal of Network and Computer Applications 36(1), 402–408 (2012)CrossRefGoogle Scholar
  29. 29.
    Rosaci, D., Sarnè, G.M.L.: Recommending Multimedia Web Services in a Multi-Device Environment. Information Systems (2012)Google Scholar
  30. 30.
    Rosaci, D., Sarnè, G.M.L., Garruzzo, S.: Integrating Trust Measures in Multiagent Systems. International Journal of Intelligent Systems 27(1), 1–15 (2012)CrossRefGoogle Scholar
  31. 31.
    Sarwar, B., Karypis, G., Konstan, J., Reidl, J.: Item-based Collaborative Filtering Recommendation Algorithms. In: Proc. 10th Int. Conf. on WWW 2001, pp. 285–295. ACM (2001)Google Scholar
  32. 32.
    Shani, G., Brafman, R., Heckerman, D.: An MDP-based Recommender System. In: Proc. 18th Conf. on Uncertainty in Artificial Intelligence, UAI 2002, pp. 453–460. Morgan Kaufmann Pub. (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.DICEAMUniversity “Mediterranea” of Reggio, Calabria Loc. Feo di VitoReggio CalabriaItaly

Personalised recommendations