Advertisement

Smart Home Task and Energy Resource Scheduling Based on Nonlinear Programming

  • Severini Marco
  • Stefano Squartini
  • Gian Piero Surace
  • Francesco Piazza
Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 26)

Abstract

The computational intelligence community has invested many efforts in the last few years on the challenging problem of automatic task and energy resources scheduling in smart home contexts. Moving from a recent work of some of the authors, jointly considering the electrical and thermal comfort needs of the user, in this paper a nonlinear optimization framework, namely “Mixed-Integer Nonlinear Programming”, is proposed on purpose. It allows dealing with nonlinearities resulting from the constraints imposed by the involved building thermal model, which was not feasible in the original linear approach. Performed computer simulations related to a realistic domestic scenario have shown that a certain improvement is attainable in terms of satisfaction of user thermal requirements, attaining at the same time an enhanced overall energy cost reduction with respect to the non-optimized scheduling strategy.

Keywords

Optimal Home Energy Management Task and Energy Resource Scheduling Mixed-Integer Nonlinear Programming Thermal Comfort Smart Grid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ipakchi, A., Albuyeh, F.: Grid of the future. IEEE Power and Energy Magazine 7(2), 52–62 (2009)CrossRefGoogle Scholar
  2. 2.
    Cecati, C., Mokryani, G., Piccolo, A., Siano, P.: An overview on the smart grid concept. In: 36th Annual Conference on IEEE Industrial Electronics Society, IECON 2010, pp. 3322–3327 (November 2010)Google Scholar
  3. 3.
    Kirthiga, M., Daniel, S., Gurunathan, S.: A methodology for transforming an existing distribution network into a sustainable autonomous micro-grid. IEEE Transactions on Sustainable Energy 4(1), 31–41 (2013)CrossRefGoogle Scholar
  4. 4.
    You, S., Marra, F., Traeholt, C.: Integration of fuel cell micro-chps on low voltage grid: A danish case study. In: 2012 Asia-Pacific Power and Energy Engineering Conference (APPEEC), pp. 1–4 (March 2012)Google Scholar
  5. 5.
    Severini, M., Squartini, S., Piazza, F.: Energy-aware lazy scheduling algorithm for energy-harvesting sensor nodes. Neural Computing & Applications, 1–10 (2013)Google Scholar
  6. 6.
    De Angelis, F., Boaro, M., Fuselli, D., Squartini, S., Piazza, F.: A comparison between different optimization techniques for energy scheduling in smart home environment. In: Apolloni, B., Bassis, S., Esposito, A., Morabito, F.C. (eds.) Neural Nets and Surroundings. SIST, vol. 19, pp. 311–320. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    Soares, J., Morais, H., Sousa, T., Vale, Z., Faria, P.: Day-ahead resource scheduling including demand response for electric vehicles. IEEE Transactions on Smart Grid (in press)Google Scholar
  8. 8.
    Hernandez, L., Baladron, C., Aguiar, J., Carro, B., Sanchez-Esguevillas, A., Lloret, J., Chinarro, D., Gomez-Sanz, J., Cook, D.: A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants. IEEE Communications Magazine 51(1), 106–113 (2013)CrossRefGoogle Scholar
  9. 9.
    Cui, H., Dai, W.: Multi-objective optimal allocation of distributed generation in smart grid. In: 2011 International Conference on Electrical and Control Engineering (ICECE), pp. 713–717 (September 2011)Google Scholar
  10. 10.
    Fuselli, D., De Angelis, F., Boaro, M., Squartini, S., Wei, Q., Liu, D., Piazza, F.: Action dependent heuristic dynamic programming for home energy resource scheduling. International Journal of Electrical Power & Energy Systems 48, 148–160 (2013)CrossRefGoogle Scholar
  11. 11.
    Fuselli, D., De Angelis, F., Boaro, M., Liu, D., Wei, Q., Squartini, S., Piazza, F.: Optimal battery management with adhdp in smart home environments. In: Wang, J., Yen, G.G., Polycarpou, M.M. (eds.) ISNN 2012, Part II. LNCS, vol. 7368, pp. 355–364. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Boaro, M., Fuselli, D., Angelis, F.D., Liu, D., Wei, Q., Piazza, F.: Adaptive dynamic programming algorithm for renewable energy scheduling and battery management. Cognitive Computation (in press)Google Scholar
  13. 13.
    Tham, C.-K., Luo, T.: Sensing-driven energy purchasing in smart grid cyber-physical system. IEEE Transactions on Systems, Man, and Cybernetics: Systems (in press)Google Scholar
  14. 14.
    Bozchalui, M., Sharma, R.: Analysis of electric vehicles as mobile energy storage in commercial buildings: Economic and environmental impacts. In: 2012 IEEE Power and Energy Society General Meeting, pp. 1–8 (July 2012)Google Scholar
  15. 15.
    Nagasaka, K., Ando, K., Xu, Y., Takamori, H., Wang, J., Mitsuta, A., Saito, O., Go, E.: A research on operation planning of multi smart micro grid. In: 2012 International Conference on Advanced Mechatronic Systems (ICAMechS), pp. 351–356 (September 2012)Google Scholar
  16. 16.
    De Angelis, F., Boaro, M., Fuselli, D., Squartini, S., Piazza, F., Wei, Q.: Optimal home energy management under dynamic electrical and thermal constraints. IEEE Transactions on Industrial Informatics 9(3), 1518–1527 (2013)CrossRefGoogle Scholar
  17. 17.
    De Angelis, F., Boaro, M., Fuselli, D., Squartini, S., Piazza, F., Wei, Q., Wang, D.: Optimal task and energy scheduling in dynamic residential scenarios. In: Wang, J., Yen, G.G., Polycarpou, M.M. (eds.) ISNN 2012, Part I. LNCS, vol. 7367, pp. 650–658. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  18. 18.
    Kazanavičius, E., Mikuckas, A., Mikuckienė, I., Čeponis, J.: The heat balance model of residential house. In: Information Technology and Control, vol. 35(4), pp. 391–396 (November 2006)Google Scholar
  19. 19.
    Qela, B., Mouftah, H.: Simulation of a house heating system using C# – an energy conservation perspective. In: 2010 23rd Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1–5 (May 2010)Google Scholar
  20. 20.
    Fux, S.F., Ashouri, A., Benz, M.J., Guzzella, L.: Ekf based self-adaptive thermal model for a passive house. Energy and Buildings (2012), http://www.sciencedirect.com/science/article/pii/S0378778812003039
  21. 21.
    Squartini, S., Fuselli, D., Boaro, M., De Angelis, F., Piazza, F.: Home energy resource scheduling algorithms and their dependency on the battery model. In: IEEE Symposium Series on Computational Intelligence (April 2013)Google Scholar
  22. 22.
    Ciabattoni, L., Grisostomi, M., Ippoliti, G., Longhi, S., Mainardi, E.: Online tuned neural networks for PV plant production forecasting. In: 38th IEEE Photovoltaic Specialists Conference (PVSC), Austin, TX, pp. 2916–2921 (June 2012)Google Scholar
  23. 23.
    Squartini, S., Boaro, M., De Angelis, F., Fuselli, D., Piazza, F.: Optimization algorithms for home energy resource scheduling in presence of data uncertainty. In: International Conference on Intelligent Control and Information Processing (June 2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Severini Marco
    • 1
  • Stefano Squartini
    • 1
  • Gian Piero Surace
    • 1
  • Francesco Piazza
    • 1
  1. 1.Università Politecnica delle MarcheAnconaItaly

Personalised recommendations