Predictive Analysis of the Seismicity Level at Campi Flegrei Volcano Using a Data-Driven Approach

  • Antonietta M. Esposito
  • Luca D’Auria
  • Andrea Angelillo
  • Flora Giudicepietro
  • Marcello Martini
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 26)


This work aims to provide a short-term tool to estimate the possible trend of the seismicity level in the area of Campi Flegrei (southern Italy) for Civil Protection purposes. During the last relevant period of seismic activity, between 1982 and 1984, an uplift of the ground (bradyseism) of more than 1.5 m occurred. It was accompanied by more than 16,000 earthquakes up to magnitude 4.2 which forced the civil authorities to order the evacuation of about 40,000 people from Pozzuoli town for several months. Scientific studies evidenced a temporal correlation between these geophysical phenomena. This has led us to consider a data-driven approach to obtain a forecast of the seismicity level for this area. In particular, a technique based on a Multilayer Perceptron (MLP) network has been used for this intent. Neural networks are data processing mechanisms capable of relating input data with output ones without any prior correlation model but only using empirical evidences obtained from the analysis of available data. The proposed method has been tested on a set of seismic and deformation data acquired between 1983 and 1985 and then including the data of the aforementioned crisis which affected the Campi Flegrei. Once defined the seismicity levels on the basis of the maximum magnitude recorded within a week, three MLP networks were implemented with respectively 2, 3 and 4 output classes. The first network (2 classes) provides only an indication about the possible occurrence of earthquakes felt by people (with magnitude higher than 1.7), while the remaining nets (3 and 4 classes) give also a rough suggestion of their intensity. Furthermore, for these last two networks one of the output classes allows to obtain a forecast about the possible occurrence of strong potentially damaging earthquakes with magnitude higher than 3.5. Each network has been trained on a fixed interval and then tested for the forecast on the subsequent period. The results show that the performance decreases as a function of the complexity of the examined task that is the number of covered classes. However, the obtained results are very promising, for which the proposed system deserves further studies since it could be of support to the Civil Protection operations in the case of possible future crises.


Campi Flegrei volcano seismicity forecast MLP neural networks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Convertito, V., Zollo, A.: Assessment of pre-crisis and syn-crisis seismic hazard at Campi Flegrei and Mt. Vesuvius volcanoes, Campania, southern Italy. Bulletin of Volcanology 73(6), 767–783 (2011), doi:10.1007/s00445-011-0455-2CrossRefGoogle Scholar
  2. 2.
    Barberi, F., Corrado, G., Innocenti, G., Luongo, G.: Phlegrean Fields 1982–1984: Brief chronicle of a volcano emergency in a densely populated area. Bull. Volcanol. 47(2), 1–22 (1984)Google Scholar
  3. 3.
    Birattari, M., Yuan, Z., Balaprakash, P., Stützle, T.: F-Race and Iterated F-Race: An Overview. In: Experimental Methods for the Analysis of Optimization Algorithms, pp. 311–336. Springer, Heidelberg (2010),, doi:10.1007/978-3-642-02538-9_13CrossRefGoogle Scholar
  4. 4.
    Bishop, C.: Neural Networks for Pattern Recognition, p. 500. Oxford University Press, New York (1995)Google Scholar
  5. 5.
    D’Auria, L., Giudicepietro, F., Aquino, I., Borriello, G., Del Gaudio, C., Lo Bascio, D., Martini, M., Ricciardi, G.P., Ricciolino, P., Ricco, C.: Repeated fluid transfer episodes as a mechanism for the recent dynamics of Campi Flegrei caldera (1989-2010). Journal of Geophysical Research 116, B04313 (2011), doi:10.1029/2010JB007837Google Scholar
  6. 6.
    Del Gaudio, C., Aquino, I., Ricciardi, G.P., Ricco, C., Scandone, R.: Unrest episodes at Campi Flegrei: A reconstruction of vertical ground movements during 1905–2009. J. Volcanol. Geotherm. Res. 195(1), 48–56 (2010), doi:10.1016/j.jvolgeores.2010.05.014CrossRefGoogle Scholar
  7. 7.
    De Natale, G., Troise, C., Pingue, F., Mastrolorenzo, G., Pappalardo, L., Battaglia, M., Boschi, E.: The Campi Flegrei caldera: Unrest mechanisms and hazards. Geol. Soc. London Spec. Publ. 269(1), 25–45 (2006), doi:10.1144/GSL.SP.2006.269.01.03CrossRefGoogle Scholar
  8. 8.
    Del Pezzo, E., Esposito, A., Giudicepietro, F., Marinaro, M., Martini, M., Scarpetta, S.: Discrimination of earthquakes and underwater explosions using neural networks. Bull. Seism. Soc. Am. 93(1), 215–223 (2003)CrossRefGoogle Scholar
  9. 9.
    Esposito, A.M., Giudicepietro, F., Scarpetta, S., D’Auria, L., Marinaro, M., Martini, M.: Automatic Discrimination among Landslide, Explosion-Quake, and Microtremor Seismic Signals at Stromboli Volcano Using Neural Networks. Bull. Seism. Soc. Am. 96(4A), 1230–1240 (2006), doi:10.1785/0120050097CrossRefGoogle Scholar
  10. 10.
    Esposito, A.M., D’Auria, L., Giudicepietro, F., Peluso, R., Martini, M.: Automatic recognition of landslide seismic signals based on neural network analysis of seismic signals: an application to the monitoring of Stromboli volcano (Southern Italy). Pure and Applied Geophysics Pageoph © Springer Basel (2012), doi:10.1007/s00024-012-0614-1Google Scholar
  11. 11.
    Giacco, F., Esposito, A.M., Scarpetta, S., Giudicepietro, F., Marinaro, M.: Support Vector Machines and MLP for automatic classification of seismic signals at Stromboli volcano. In: Apolloni, B., et al. (eds.) Neural Nets WIRN 2009 Proceedings of the 19th Italian Workshop on Neural Nets, Vietri sul Mare, Salerno, Italy, May 28-30. IOS Press (2009)Google Scholar
  12. 12.
    Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Networks 2, 359–366 (1989)CrossRefGoogle Scholar
  13. 13.
    Hornik, K.: Approximation capabilities of multilayer feedforward networks. Neural Networks 4, 251–257 (1991)CrossRefGoogle Scholar
  14. 14.
    Hu, M.J.C.: Application of the adaline system to weather forecasting. Master Thesis. Technical Report 6775-1, Stanford Electronic Laboratories, Stanford, CA (June 1964)Google Scholar
  15. 15.
    Hutter, F., Hoos, H.H., Leyton-Brown, K., Stuetzle, T.: ParamILS: An Automatic Algorithm Configuration Framework. Journal of Artificial Intelligence Research 36, 267–306 (2009)MATHGoogle Scholar
  16. 16.
    Martini, M., Giudicepietro, F., D’Auria, L., Orazi, M., Borriello, G., Buonocunto, C., Capello, M., Caputo, A., Caputo, T., De Cesare, W., Esposito, A., Lo Bascio, D., Ricciolino, P., Peluso, R., Scarpato, G.: Seismological monitoring of Campi Flegrei caldera. Geophysical Research Abstracts, vol. 10, EGU2008-A-09610, 2008 SRef-ID: 1607-7962/gra/EGU2008-A-09610 EGU General Assembly (2008)Google Scholar
  17. 17.
    Mitrea, C.A., Lee, C.K.M., Wu, Z.: A Comparison between Neural Networks and Traditional Forecasting Methods: A Case Study. International Journal of Engineering Business Management 1(2), 19–24 (2009)Google Scholar
  18. 18.
    Orsi, G., Civetta, L., Del Gaudio, C., de Vita, S., Di Vito, M.A., Isaia, R., Petrazzuoli, S.M., Ricciardi, G.P., Ricco, C.: Short-term ground deformations and seismicity in the resurgent Campi Flegrei caldera (Italy): An example of active block-resurgence in a densely populated area. J. Volcanol. Geotherm. Res. 91, 415–451 (1999)CrossRefGoogle Scholar
  19. 19.
    Orsi, G., Di Vito, M.A., Isaia, R.: Volcanic hazard assessment at the restless Campi Flegrei caldera. Bull. Volcanol. 66, 514–530 (2004)Google Scholar
  20. 20.
    Priolo, E., Lovisa, L., Zollo, A., et al.: The Campi Flegrei Blind Test: Evaluating the Imaging Capability of Local Earthquake Tomography in a Volcanic Area. International Journal of Geophysics 2012, Article ID 505286, 37 (2012), doi:10.1155/2012/505286Google Scholar
  21. 21.
    Richard, M.D., Lippmann, R.: Neural network classifiers estimate Bayesian a posteriori probabilities. Neural Comput. 3, 461–483 (1991)CrossRefGoogle Scholar
  22. 22.
    Scarpetta, S., Giudicepietro, F., Ezin, E.C., Petrosino, S., Del Pezzo, E., Martini, M., Marinaro, M.: Automatic Classification of seismic signals at Mt. Vesuvius Volcano, Italy using Neural Networks. Bull. Seism. Soc. Am. 95, 185–196 (2005)CrossRefGoogle Scholar
  23. 23.
    Sukanesh, R., Harikumar, R.: A Comparison of Genetic Algorithm & Neural Network (MLP) In Patient Specific Classification of Epilepsy Risk Levels from EEG Signals. Engineering Letters 14(1), EL_14_1_18 (2007) (Advance online publication: February 12, 2007)Google Scholar
  24. 24.
    Troise, C., De Natale, G., Obrizzo, F., De Martino, P., Tammaro, U., Boschi, E.: Renewed ground uplift at Campi Flegrei caldera (Italy): New insight on magmatic processes and forecast. Geophys. Res. Lett. 34, L03301 (2007), doi:10.1029/2006GL028545Google Scholar
  25. 25.
    Young, S.J.: HTK: Hidden Markov Model Toolkit V1.5. Cambridge University Engineering Department Speech Group and Entropic Research Laboratories, Inc., Washington, D.C (1993)Google Scholar
  26. 26.
    Widrow, B., Rumelhart, D.E., Lehr, M.A.: Neural networks Applications in industry, business and science. Communication of the ACM 37(3), 93–105 (1994)CrossRefGoogle Scholar
  27. 27.
    Zhang, G., Patuwo, B.E., Hu, M.Y.: Forecasting with artificial neural networks: The state of the art. International Journal of Forecasting 14, 35–62 (1998); Elsevier Science B.V. PII S0169-2070(97)00044-7Google Scholar
  28. 28.
    Zhang, G.P.: Neural Networks for Classification: A Survey. IEEE Transactions on Systems, Man, and Cybernetics- Part C: Applications and Reviews 30(4), 1094–6977 (2000); Publisher Item Identifier S 1094-6977(00)11206-4Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Antonietta M. Esposito
    • 1
  • Luca D’Auria
    • 1
  • Andrea Angelillo
    • 1
    • 2
  • Flora Giudicepietro
    • 1
  • Marcello Martini
    • 1
  1. 1.Sezione di Napoli Osservatorio VesuvianoIstituto Nazionale di Geofisica e VulcanologiaNapoliItaly
  2. 2.Exploration & Production Division, GINE Dept. S. Donato MilaneseENI S.p.A.RomeItaly

Personalised recommendations