A Memristor Circuit Using Basic Elements with Memory Capability

Conference paper
Part of the Smart Innovation, Systems and Technologies book series (SIST, volume 26)

Abstract

After the introduction of the memory–resistor (i.e. memristor), a fundamental two-terminal circuit element defined as a nonlinear relationship between the integral of the voltage and the integral of the current, the class of memristor-based systems was extended by L.O. Chua and S. Kang in 1976. In the literature, the research interest devoted to the discover of novel physical systems with memristor behavior is growing. In 2012, an elementary electronic circuit discovered by F. Corinto and A. Ascoli, based on a Graetz bridge loaded with a RLC filter, was classified to be a memrisor-based system without memory capability. In this paper, the possibility of adding memory on the memristor-based system proposed in 2012 is exploited. In fact, the circuit proposed by F. Corinto and A. Ascoli does not have the memory capability, one of the more important characteristics of the memristor. The memory is added to the system using elementary components in a transfer charge circuit. Results show the memristor-based nature and the memory capability of the presented electronic system.

Keywords

Memristor Memristor-based system Transfer charge circuit Non-linear circuit Memory devices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chua, L.O.: Memristor: the missing circuit element. IEEE Transactions on Circuit Theory 18(5), 507–519 (1971)CrossRefGoogle Scholar
  2. 2.
    Chua, L.O., Kang, S.M.: Memristive devices and systems. Proc. IEEE 64(2), 209–223 (1976)CrossRefMathSciNetGoogle Scholar
  3. 3.
    Strukov, D.B., Snider, G.S., Stewart, D.R., Williams, R.S.: The missing memristor found. Nature 14, 80–83 (2008)CrossRefGoogle Scholar
  4. 4.
    Pickett, M.D., Strukov, D.B., Borghetti, J.L., Yang, J.J., Snider, G.S., Stewart, D.R., Williams, R.S.: Switching Dynamics in Titanium Dioxide Memristive Devices. J. Appl. Phys. 106, 74508 (2009)CrossRefGoogle Scholar
  5. 5.
    Joglekar, Y.N., Wolf, S.T.: The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30, 661–675 (2009)CrossRefMATHGoogle Scholar
  6. 6.
    Biolek, Z., Biolek, D., Biolková, B.: Spice model of memristor with nonlinear dopant drift. Radio. Eng. 18(2), 210–214 (2009)Google Scholar
  7. 7.
    Corinto, F., Ascoli, A.: A boundary condition-based approach to the modeling of memristor nanostructures. IEEE Trans. Circuits Syst. I 59, 2713–2726 (2012), doi:10.1109/TCSI.2012.2190563CrossRefMathSciNetGoogle Scholar
  8. 8.
    Kvatinsky, S., Friedman, E.G., Kolodny, A., Weiser, U.C.: TEAM - ThrEshold Adaptive Memristor Model. IEEE Trans. Circuits Syst. I 60(1), 211–221 (2013)CrossRefMathSciNetGoogle Scholar
  9. 9.
    Ascoli, A., Corinto, F., Senger, V., Tetzlaff, R.: Memristor Model Comparison. IEEE Circuits and Systems Magazine 13(2), 89–105 (2013), doi:10.1109/MCAS.2013.2256272CrossRefGoogle Scholar
  10. 10.
    Abdalla, H., Pickett, M.D.: SPICE modeling of Memristors. In: IEEE International Symposium on Circuits and Systems, pp. 1832–1835 (2011)Google Scholar
  11. 11.
    Rak, A., Cserey, G.: Macromodeling of the Memristor in SPICE. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 29(4), 632–636 (2010)CrossRefGoogle Scholar
  12. 12.
    Corinto, F., Ascoli, A., Gilli, M.: Analysis of current-voltage characteristics for memristor-based elements in pattern recognition systems. Int. J. Circuit Theory Appl. (2012), doi:10.1002/cta.1804Google Scholar
  13. 13.
    Corinto, F., Ascoli, A., Gilli, M.: Nonlinear dynamics of memristor oscillators. IEEE Trans. Circuits Syst. I 58(6), 1323–1336 (2011)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Talukdar, A., Radwan, A.G., Salama, K.N.: Nonlinear dynamics of memristor based 3rd order oscillatory system. Microelectronics Journal 43(3), 169–175 (2012)CrossRefGoogle Scholar
  15. 15.
    Strukov, D.B., Stewart, D.R., Borghetti, J.L., Li, X., Pickett, M., Ribeiro, G.M., Robinett, W., Snider, G.S., Strachan, J.P., Wu, W., Xia, Q., Yang, J.J., Williams, R.S.: Hybrid CMOS/memristor circuits. In: Int. Symp. on Circuits and Syst., pp. 1967–1970 (2010)Google Scholar
  16. 16.
    Versace, M., Chandler, B.: MoNETA: A Mind Made from Memristors. IEEE Spectrum (2010)Google Scholar
  17. 17.
    Johnsen, G.K.: An introduction to the memristor: a valuable circuit element in bioelectricity and bioimpedance. J. Electr. Bioimp. 3, 20–28 (2012)Google Scholar
  18. 18.
    Corinto, F., Ascoli, A.: Memristive diode bridge with LCR filter. Electronics Letters 48(14), 824–825 (2012)CrossRefGoogle Scholar
  19. 19.
    Troiano, A., Pasero, E., Mesin, L.: New System for Detecting Road Ice Formation. IEEE Transactions on Instrumentation and Measurement 60(3), 1091–1101 (2011)CrossRefGoogle Scholar
  20. 20.
    Chua, L.O.: Resistance switching memories are memristors. Appl. Phys. A 102(4), 765–783 (2011)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of Electronic and Telecommunication (DET)Politecnico di TorinoTorinoItaly

Personalised recommendations