Skip to main content

Empirical Exploration of Extreme SVM-RBF Parameter Values for Visual Object Classification

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8326))

Abstract

This paper presents a preliminary exploration showing the surprising effect of extreme parameter values used by Support Vector Machine (SVM) classifiers for identifying objects in images. The Radial Basis Function (RBF) kernel used with SVM classifiers is considered to be a state-of-the-art approach in visual object classification. Standard tuning approaches apply a relative narrow window of values when determining the main parameters for kernel size. We evaluated the effect of setting an extremely small kernel size and discovered that, contrary to expectations, in the context of visual object classification for some object and feature combinations these small kernels can demonstrate good classification performance. The evaluation is based on experiments on the TRECVid 2013 Semantic INdexing (SIN) training dataset and provides initial indications that can be used to better understand the optimisation of RBF kernel parameters.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning, 273–297 (1995)

    Google Scholar 

  2. Aizerman, M.A., Braverman, E.A., Rozonoer, L.: Theoretical foundations of the potential function method in pattern recognition learning. Automation and Remote Control (25), 821–837 (1964)

    Google Scholar 

  3. Lin, C.J., Hsu, C.W., Chang, C.C.: A practical guide to support vector classification (2003)

    Google Scholar 

  4. Vert, J.P., Tsuda, K., Scholkopf, B.: A primer on kernel methods. In: Kernel Methods in Computational Biology, pp. 35–70

    Google Scholar 

  5. Smeaton, A.F., Over, P., Kraaij, W.: Evaluation campaigns and trecvid. In: MIR 2006: Proceedings of the 8th ACM International Workshop on Multimedia Information Retrieval, pp. 321–330. ACM Press, New York (2006)

    Google Scholar 

  6. Bolón-Canedo, V., Sánchez-Maroño, N., Alonso-Betanzos, A.: A review of feature selection methods on synthetic data. Knowledge and Information Systems 34(3), 483–519 (2013)

    Article  Google Scholar 

  7. Huang, C.-L., Wang, C.-J.: A ga-based feature selection and parameters optimization for support vector machines. Expert Systems with Applications 31(2), 231–240 (2006)

    Article  Google Scholar 

  8. Lin, S.-W., Ying, K.-C., Chen, S.-C., Lee, Z.-J.: Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Systems with Applications 35(4), 1817–1824 (2008)

    Article  Google Scholar 

  9. Duan, K., Sathiya Keerthi, S., Poo, A.N.: Evaluation of simple performance measures for tuning svm hyperparameters. Neurocomputing 51, 41–59 (2003)

    Article  Google Scholar 

  10. Takeuchi, I., Le, Q.V., Sears, T.D., Smola, A.J., Williams, C.: Nonparametric quantile estimation. Journal of Machine Learning Research 7, 7–1231 (2006)

    Google Scholar 

  11. Chang, C.-C., Lin, C.-J.: LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 27:1–27:27 (2011), Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm

  12. Sivic, J., Zisserman, A.: Video Google: A text retrieval approach to object matching in videos. In: Proceedings of the International Conference on Computer Vision, vol. 2, pp. 1470–1477 (October 2003)

    Google Scholar 

  13. van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for object and scene recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 32(9), 1582–1596 (2010)

    Article  Google Scholar 

  14. Safadi, B., Quénot, G.: Descriptor optimization for multimedia indexing and retrieval. In: CBMI, pp. 1–6 (2013)

    Google Scholar 

  15. Yilmaz, E., Kanoulas, E., Aslam, J.A.: A simple and efficient sampling method for estimating ap and ndcg. In: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR 2008, pp. 603–610. ACM, New York (2008)

    Chapter  Google Scholar 

  16. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Workshop on Statistical Learning in Computer Vision, ECCV, pp. 1–22 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Albatal, R., Little, S. (2014). Empirical Exploration of Extreme SVM-RBF Parameter Values for Visual Object Classification. In: Gurrin, C., Hopfgartner, F., Hurst, W., Johansen, H., Lee, H., O’Connor, N. (eds) MultiMedia Modeling. MMM 2014. Lecture Notes in Computer Science, vol 8326. Springer, Cham. https://doi.org/10.1007/978-3-319-04117-9_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04117-9_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04116-2

  • Online ISBN: 978-3-319-04117-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics