Skip to main content

Contribution of Dietary Fat in the Induction of Oxidative Stress

  • Chapter
  • First Online:
Book cover Inflammation and Oxidative Stress in Neurological Disorders
  • 1625 Accesses

Abstract

Western diet, which is enriched in saturated animal fats, n-6 fatty acids and refined sugars produces oxidative stress and inflammation throughout the body including brain. In contrast Mediterranean diets, which is high in green vegetables, fresh fruits, fish, olive oil, and garlic along with red wine retards inflammation and oxidative stress. Western diet-mediated increase in oxidative stress leads to numerous downstream effects including the generation of enzymic (eicosanoids) and nonenzymic lipid mediators (α,β-unsaturated aldehydes, isoprostanes, isofurans, and isoketals) of n-6 fatty acid metabolism and induction of inflammatory cascades. Interactions of ROS with cellular DNA, proteins and lipids play important roles in pathophysiology of diabetes, metabolic syndrome as well as neurotraumatic and neurodegenerative diseases. In addition, enzymic and nonenzymic oxidation of ARA produce eicosanoids, 4-HNE, IsoP, IsoF, IsoK, Ac and MDA. Increased plasma levels of these metabolites have been associated with neurotraumatic and neurodegenerative diseases. Resolvins and protectins/neuroprotectins, the EPA and DHA-derived lipid mediators regulate immune systems by inhibiting signal transduction processes associated with oxidative stress, neuroinflammation and neurodegeneration. Collective evidence suggests that Resolvins and protectins/neuroprotectins produce potent anti-inflammatory, antioxidants, and pro-resolution effects by inhibiting oxidative stress and enhancing clearance of apoptotic cells and debris from inflamed brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams JD Jr, Klaidman LK (1993) Acrolein-induced oxygen radical formation. Free Radic Biol Med 15:187–193

    CAS  PubMed  Google Scholar 

  • Aldini G, Dalle-Donne I, Facino RM, Milzani A, Carini M (2007) Intervention strategies to inhibit protein carboxylation by lipoxidation-derived reactive carbonyls. Med Res Rev 27:817–868

    CAS  PubMed  Google Scholar 

  • Alvarez S, Valdez LB, Zaobornyj T, Boveris A (2003) Oxygen dependence of mitochondrial nitric oxide synthase activity. Biochem Biophys Res Commun 305:771–775

    CAS  PubMed  Google Scholar 

  • Andreoletti O, Levavasseur E, Uro-Coste E, Tabouret G, Sarradin P, Delisle MB, Berthon P, Salvayre R, Schelcher F, Negre-Salvayre A (2002) Astrocytes accumulate 4-hydroxynonenal adducts in murine scrapie and human Creutzfeldt-Jakob disease. Neurobiol Dis 11:386–393

    CAS  PubMed  Google Scholar 

  • Arita M, Oh SF, Chonan T, Hong S, Elangovan S, Sun YP, Uddin J, Petasis NA, Serhan CN (2006) Metabolic inactivation of resolvin E1 and stabilization of its anti-inflammatory actions. J Biol Chem 281:22847–22854

    CAS  PubMed  Google Scholar 

  • Arita M, Ohira T, Sun YP, Elangovan S, Chiang N, Serhan CN (2007) Resolvin E1 selectively interacts with leukotriene B4 receptor BLT1 and ChemR23 to regulate inflammation. J Immunol 178:3912–3917

    CAS  PubMed  Google Scholar 

  • Bayir H, Kagan VE, Tyurina YY, Tyurin V, Ruppel RA, Adelson PD, Graham SH, Janesko K, Clark RS, Kochanek PM (2002) Assessment of antioxidant reserves and oxidative stress in cerebrospinal fluid after severe traumatic brain injury in infants and children. Pediatr Res 51:571–578

    PubMed  Google Scholar 

  • Bazan NG (2009a) Cellular and molecular events mediated by docosahexaenoic acid-derived neuroprotectin D1 signaling in photoreceptor cell survival and brain protection. Prostaglandins Leukot Essent Fatty Acids 81:205–211

    CAS  Google Scholar 

  • Bazan NG (2009b) Neuroprotectin D1-mediated anti-inflammatory and survival signaling in stroke, retinal degenerations, and Alzheimer’s disease. J Lipid Res 50(Suppl.):S400–S405

    Google Scholar 

  • Botzen D, Grune T (2007) Degradation of HNE-modified proteins—possible role of ubiquitin. Redox Rep 12:63–67

    CAS  PubMed  Google Scholar 

  • Boutaud O, Andreasson KI, Zagol-Ikapitte I, Oates JA (2005) Cyclooxygenase-dependent lipid-modification of brain proteins. Brain Pathol 15:139–142

    CAS  PubMed  Google Scholar 

  • Bradley MA, Markesbery WR, Lovell MA (2010) Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease. Free Rad Biol Med 48:1570–1576

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brooks JD, Milne GL, Yin H, Sanchez SC, Porter NA, Morrow JD (2008) Formation of highly reactive cyclopentenone isoprostane compounds (A3/J3-isoprostanes) in vivo from eicosapentaenoic acid. J Biol Chem 283:12043–12055

    CAS  PubMed  Google Scholar 

  • Burcham PC, Pyke SM (2006) Hydralazine inhibits rapid acrolein-induced protein oligomerization: role of aldehyde scavenging and adduct trapping in cross-link blocking and cytoprotection. Mol Pharmacol 69:1056–1065

    CAS  PubMed  Google Scholar 

  • Burcham PC, Fontaine FR, Kaminskas LM, Petersen DR, Pyke SM (2004) Protein adduct-trapping by hydrazinophthalazine drugs: mechanisms of cytoprotection against acrolein-mediated toxicity. Mol Pharmacol 65:655–664

    CAS  PubMed  Google Scholar 

  • Burwell LS, Nadtochiy SM, Tompkins AJ, Young S, Brookes PS (2006) Direct evidence for S-nitrosation of mitochondrial complex I. Biochem J 394:627–634

    CAS  PubMed  Google Scholar 

  • Butterfield DA, Bader Lange ML, Sultana R (2010) Involvements of the lipid peroxidation product, HNE, in the pathogenesis and progression of Alzheimer’s disease. Biochim Biophys Acta 1801:924–929

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calder PC (2009) Polyunsaturated fatty acids and inflammatory processes: New twists in an old tale. Biochimie 91:791–795

    CAS  PubMed  Google Scholar 

  • Carbone DL, Doorn JA, Petersen DR (2004) 4-Hydroxynonenal regulates 26S proteasomal degradation of alcohol dehydrogenase. Free Radic Biol Med 37:1430–1439

    CAS  PubMed  Google Scholar 

  • Carrier EJ, Amarnath; Oates JA, Boutaud O (2009) Characterization of covalent adducts of nucleosides and DNA formed by reaction with levuglandin. Biochemistry 48:10775–10781

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chowdhury PK, Halder M, Choudhury PK, Kraus GA, Desai MJ, Armstrong DW, Cassey TA, Rasmussen MA, Petrich JW (2004) Generation of fluorescent adducts of malondialdehyde and amino acids: toward an understanding of lipofuscin. Photochem Photobiol 79:21–25

    CAS  PubMed  Google Scholar 

  • Chung FL, Nath RG, Ocando J, Nishikawa A, Zhang L (2000) Deoxyguanosine adducts of t-4-hydroxy-2-nonenal are endogenous DNA lesions in rodents and humans: detection and potential sources. Cancer Res 60:1507–1511

    CAS  PubMed  Google Scholar 

  • Cracowski JL (2004) Isoprostanes: an emerging role in vascular physiology and disease? Chem Phys Lipids 128:75–83

    CAS  PubMed  Google Scholar 

  • Dang TN, Arseneault M, Murthy V, Ramassamy C (2010) Potential role of acrolein in neurodegeneration and in Alzheimer’s disease. Curr Mol Pharmacol 3:66–75

    PubMed  Google Scholar 

  • Davies SS, Amarnath V, Roberts LJ II (2004) Isoketals: highly reactive γ-ketoaldehydes formed from the H2-isoprostane pathway. Chem Phys Lipids 128:85–99

    CAS  PubMed  Google Scholar 

  • Del Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as a toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Res 15:316–328

    Google Scholar 

  • Donato AJ, Eskurza I, Silver AE, Levy AS, Pierce GL, Gates PE, Seals DR (2007) Direct evidence of endothelial oxidative stress with aging in humans: Relation to impaired endothelium-dependent dilation and upregulation of nuclear factor-kappaB. Circ Res 100:1659–1666

    CAS  PubMed  Google Scholar 

  • Droge W (2002) Free radicals in the physiological control of cell function. Physiol Rev 82:47–95

    CAS  PubMed  Google Scholar 

  • Duplus E, Glorian M, Forest C (2000) Fatty acid regulation of gene transcription. J Biol Chem 275:30749–30752

    CAS  PubMed  Google Scholar 

  • Durand T, Cracowski T, Berdeaux O (2005). Isoprostanes, biomarkers of lipid peroxidation in humans. Part 1. Nomenclature and synthesis. Pathol Biol (Paris) 53:349–355

    CAS  Google Scholar 

  • Eaton P, Li J, Hearse DJ, Shattock MJ (1999) Formation of 4-hydroxy-2-nonenal-modified proteins in ischemic rat heart. Am J Physiol 276:H935–H943

    CAS  PubMed  Google Scholar 

  • Echtay KS (2007) Mitochondrial uncoupling proteins—what is their physiological role. Free Radic Biol Med 43:1351–1371

    CAS  PubMed  Google Scholar 

  • Esterbauer H (1993) Cytotoxicity and genotoxicity of lipid-oxidation products. Am J Clin Nutr 57:S779–S785. discussion S785–S786

    Google Scholar 

  • Esterbauer H (1996) Estimation of peroxidative damage. A critical review. Pathol Biol (Paris) 44:25–28

    CAS  Google Scholar 

  • Esterbauer H, Schaur RJ, Zollner H (1991) Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med 11:81–128

    CAS  PubMed  Google Scholar 

  • Fahrenkrog B (2006) The nuclear pore complex, nuclear transport, and apoptosis. Can J Physiol Pharmacol 84:279–286

    CAS  PubMed  Google Scholar 

  • Fam SS, Morrow JD (2003) The isoprostanes: Unique products of arachidonic acid oxidation—A review. Curr Medicinal Chem 10:1723–1740

    CAS  Google Scholar 

  • Fang J, Holmgren A (2006) Inhibition of thioredoxin and thioredoxin reductase by 4-hydroxy-2-nonenal in vitro and in vivo. J Am Chem Soc 128:1879–1885

    CAS  PubMed  Google Scholar 

  • Farias SE, Basselin M, Chang L, Heidenreich KA, Rapoport SI, Murphy RC (2008) Formation of eicosanoids, E2/D2 isoprostanes, and docosanoids following decapitation-induced ischemia, measured in high-energy-microwaved rat brain. J Lipid Res 49:1990–2000

    CAS  PubMed  Google Scholar 

  • Farooqui AA, Horrocks LA (2006) Phospholipase A2-generated lipid mediators in the brain: the good, the bad, and the ugly. Neuroscientist 12:245–260

    CAS  PubMed  Google Scholar 

  • Farooqui AA, Horrocks LA (2007) Glycerophospholipids in the brain: phospholipases A2 in neurological disorders. Springer, New York

    Google Scholar 

  • Farooqui AA (2009) Beneficial effects of fish oil on human brain. Springer, New York

    Google Scholar 

  • Farooqui AA (2010) Neurochemical aspects of neurotraumatic and neurodegenerative diseases. Springer, New York

    Google Scholar 

  • Farooqui AA (2011) Lipid mediators and their metabolism in the brain. Springer, New York

    Google Scholar 

  • Farooqui AA (2013) Metabolic syndrome: an important risk factor for stroke, Parkinson disease, and depression. Springer, New York

    Google Scholar 

  • Farooqui AA, Farooqui T, Panza F, Frisardi V (2012) Metabolic syndrome as a risk factor for neurological disorders. Cell Mol Life Sci 69:741–762

    CAS  PubMed  Google Scholar 

  • Fessel JP, Porter NA, Moore KP, Sheller JR, Roberts J II (2002) Discovery of lipid peroxidation products formed in vivo with a substituted tetrahydrofuran ring (isofurans) that are favored by increased oxygen tension. Proc Natl Acad Sci USA 99:16713–16718

    CAS  PubMed  Google Scholar 

  • Fessel JP, Hulette C, Powell S, Roberts LJ 2nd, Zhang J (2003) Isofurans, but not F2-isoprostanes, are increased in the substantia nigra of patients with Parkinson’s disease and with dementia with Lewy body disease. J Neurochem 85:645–650

    CAS  PubMed  Google Scholar 

  • Freeman LR, Keller JN (2012) Oxidative stress and cerebral endothelial cells: regulation of the blood-brain-barrier and antioxidant based interventions. Biochim Biophys Acta 1822: 822–829

    CAS  PubMed Central  PubMed  Google Scholar 

  • Friquet B, Bulleau AL, Petropoulos I (2008) Mitochondrial protein quality control: implications in ageing. Biotechnol J 3:757–764

    Google Scholar 

  • Frohnert BI, Long EK, Hahn WS, Bernlohr DA (2013) Glutathionylated lipid aldehydes are products of adipocyte oxidative stress and activators of macrophage inflammation. Diabetes. 2013 Sep 23. (in press)

    Google Scholar 

  • Gao L, Yin H, Milne G, Porter NA, Morrow JD (2006) Formation of F-ring isoprostane-like compounds (F3-isoprostanes) in vivo from eicosapentaenoic acid. J Biol Chem J Biol Chem 281:14092–14099

    CAS  Google Scholar 

  • Gao L, Wang J, Sekhar KR, Yin H, Yared NF, Schneider SN, Sasi S, Dalton TP, Anderson ME, Chan JY, Morrow JD, Freeman ML (2007). Novel n-3 fatty acid oxidation products activate Nrf2 by destabilizing the association between Keap1 and Cullin3. J Biol Chem 282:2529–2537

    CAS  PubMed  Google Scholar 

  • Gard AL, Solodushko VG, Waeg G, Majic T (2001) 4-Hydroxynonenal, a lipid peroxidation byproduct of spinal cord injury, is cytotoxic for oligodendrocyte progenitors and inhibits their responsiveness to PDGF. Microsc Res Tech 52:709–718

    CAS  PubMed  Google Scholar 

  • Geng Y, Hansson GK, Holme E (1992) Interferon-gamma and tumor necrosis factor synergize to induce nitric oxide production and inhibit mitochondrial respiration in vascular smooth muscle cells. Circ Res 71:1268–1276

    CAS  PubMed  Google Scholar 

  • Gil L, Siems W, Mazurek B, Gross J, Schroeder P, Voss P, Grune T (2006) Age-associated analysis of oxidative stress parameters in human plasma and erythrocytes. Free Rad Res 40:495–505

    CAS  Google Scholar 

  • Giri S, Rattan R, Singh AK, Singh I (2004) The 15-deoxy-delta12,14-prostaglandin J2 inhibits the inflammatory response in primary rat astrocytes via down-regulating multiple steps in phosphatidylinositol 3-kinase-Akt-NF-kappaB-p300 pathway independent of peroxisome proliferator-activated receptor. J Immunol 173:5196–5208

    CAS  PubMed  Google Scholar 

  • Greco A, Minghetti L, Levi G (2000) Isoprostanes, novel markers of oxidative injury, help understanding the pathogenesis of neurodegenerative diseases. Neurochem Res 25:1357–1364

    CAS  PubMed  Google Scholar 

  • Grimsrud PA, Picklo MJ Sr, Griffin TJ, Bernlohr DA (2007) Carbonylation of adipose proteins in obesity and insulin resistance: identification of adipocyte fatty acid-binding protein as a cellular target of 4-hydroxynonenal. Mol Cell Proteomics 6:624–637

    CAS  PubMed  Google Scholar 

  • Gueraud F, Atalay M, Bresgen N, Cipak A, Eckl PM, Huc L, Jouanin I, Siems W, Uchida K (2010) Chemistry and biochemistry of lipid peroxidation products. Free Radic Res 44:1098–1124

    CAS  PubMed  Google Scholar 

  • Guichardant M, Bernoud-Hubac N, Chantegrel B, Deshayes C, Lagarde M (2002) Aldehydes from n-6 fatty acid peroxidation. Effects on aminophospholipids. Prostaglandins Leukot Essent Fatty Acids 67:147–149

    CAS  PubMed  Google Scholar 

  • Hill BG, Haberzettl P, Ahmed Y, Srivastava S, Bhatnagar A (2008) Unsaturated lipid peroxidation-derived aldehydes activate autophagy in vascular smooth-muscle cells. Biochem J 410:525–534

    CAS  PubMed  Google Scholar 

  • Hong S, Gronert K, Devchand PR, Moussignac RL, Serhan CN (2003) Novel docosatrienes and 17S-resolvins generated from docosahexaenoic acid in murine brain, human blood, and glial cells. Autacoids in anti-inflammation. J Biol Chem 278:14677–14687

    CAS  PubMed  Google Scholar 

  • Hong S, Porter TF, Lu Y, Oh SF, Pillai PS, Serhan CN (2008) Resolvin E1 metabolome in local inactivation during inflammation-resolution. J Immunol 180:3512–3519

    CAS  PubMed  Google Scholar 

  • Huang YJ, Jin MH, Pi RB, Zhang JJ, Ouyang Y, Chao XJ, Chen MH, Liu PQ, Yu JC, Ramassamy C, Dou J, Chen XH, Jiang YM, Qin J (2013) Acrolein induces Alzheimer’s disease-like pathologies in vitro and in vivo. Toxicol Lett 217:184–191

    CAS  PubMed  Google Scholar 

  • Jensen JM, Shi R (2003) Effects of 4-aminopyridine on stretched mammalian spinal cord: the role of potassium channels in axonal conduction. J Neurophysiol 90:2334–2340

    CAS  PubMed  Google Scholar 

  • Kadoya A, Miyake H, Ohyashiki T (2003) Contribution of lipid dynamics on the inhibition of bovine brain synaptosomal Na+-K+-ATPase activity induced by 4-hydroxy-2-nonenal. Biol Pharm Bull 26:787–793

    CAS  PubMed  Google Scholar 

  • Kaminskas LM, Pyke SM, Burcham PC (2004) Reactivity of hydrazinophthalazine drugs with the lipid peroxidation products acrolein and crotonaldehyde. Org Biomol Chem 2:2578–2584

    CAS  PubMed  Google Scholar 

  • Kehrer JP, Biswal SS (2000) The molecular effects of acrolein. Toxicol Sci 57:6–15

    CAS  PubMed  Google Scholar 

  • Keller JN, Mattson MP (1998) Roles of lipid peroxidation in modulation of cellular signaling pathways, cell dysfunction, and death in the nervous system. Rev Neurosci 9:105–116

    CAS  PubMed  Google Scholar 

  • Kinsella BT, O’Mahony DJ, Fitzgerald GA (1997) The human thromboxane A2 receptor alpha isoform (TP alpha) functionally couples to the G proteins Gq and G11 in vivo and is activated by the isoprostane 8-epi prostaglandin F2 alpha. J Pharmacol Exp Ther 281:957–964

    CAS  PubMed  Google Scholar 

  • Koves TR, Ussher JR, Noland RC, Slentz D, Mosedale M, Ilkayeva O, Bain J, Stevens R, Dyck JR, Newgard CB, Lopaschuk GD, Muoio DM (2008) Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell Metab 7:45–56

    CAS  PubMed  Google Scholar 

  • Lahaie I, Hardy P, Hou X, Hassessian H, Asselin P, Lachapelle P, Almazan G, Varma DR, Morrow JD, Roberts LJ II, Chemtob S (1998) A novel mechanism for vasoconstrictor action of 8-isoprostaglandin F on retinal vessels. Am J Physiol 274:R1406–R1416

    CAS  PubMed  Google Scholar 

  • Lauderback CM, Hackett JM, Huang FF, Keller JN, Szweda LI, Markesbery WR, Butterfield DA (2001) The glial glutamate transporter, GLT-1, is oxidatively modified by 4-hydroxy-2-nonenal in the Alzheimer’s disease brain: the role of Aβ1–42. J Neurochem 78:413–416

    CAS  PubMed  Google Scholar 

  • Lebovitz HE, Banerji MA (2005) Point: visceral adiposity is causally related to insulin resistance. Diabetes Care 28:2322–2325

    PubMed  Google Scholar 

  • Levonen AL, Landar A, Ramachandran A, Ceaser EK, Dickinson DA, Zanoni G, Morrow JD, Darley-Usmar VM (2004) Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem J 378:373–382

    CAS  PubMed  Google Scholar 

  • Lin D, Lee HG, Liu Q, Perry G, Smith MA, Sayre LM (2005) 4-Oxo-2-nonenal is both more neurotoxic and more protein reactive than 4-hydroxy-2-nonenal. Chem Res Toxicol 18:1219–1231

    CAS  PubMed  Google Scholar 

  • Lin TN, Cheung WM, Wu JS, Chen JJ, Lin H, Chen JJ, Liou JY, Shyue SK, Wu KK (2006) 15d-prostaglandin J2 protects brain from ischemia-reperfusion injury. Arterioscler Thromb Vasc Biol 26:481–487

    CAS  PubMed  Google Scholar 

  • Liu W, Akhand AA, Kato M, Yokoyama I, Miyata T, Kurokawa K, Uchida K, Nakashima I (1999) 4-Hydroxynonenal triggers an epidermal growth factor receptor-linked signal pathway for growth inhibition. J Cell Sci 112:2409–2417

    CAS  PubMed  Google Scholar 

  • Liu HY, Zheng G, Zhu H, Woldegiorgis G (2007) Hormonal and nutritional regulation of muscle carnitine palmitoyltransferase I gene expression in vivo. Arch Biochem Biophys 465:437–442

    CAS  PubMed  Google Scholar 

  • Long J, Liu C, Sun L, Gao H, Liu J (2009) Neuronal mitochondrial toxicity of malondialdehyde: inhibitory effects on respiratory function and enzyme activities in rat brain mitochondria. Neurochem Res 34:786–794

    CAS  PubMed  Google Scholar 

  • Lovell MA, Xie C, Markesbery WR (2001) Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures. Neurobiol Aging 22:187–194

    CAS  PubMed  Google Scholar 

  • Luce K, Well AC, Osiewacz HD (2010) Mitochondrial protein quality control systems in aging and disease. Adv Exp Med Biol 694:108–125

    CAS  PubMed  Google Scholar 

  • Marcheselli VL, Hong S, Lukiw WJ, Tian XH, Gronert K, Musto A, Hardy M, Gimenez JM, Chiang N, Serhan CN, Bazan NG (2003) Novel docosanoids inhibit brain ischemia-reperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J Biol Chem 278:43807–43817

    CAS  PubMed  Google Scholar 

  • Marcheselli VL, Mukherjee PK, Arita M, Hong S, Antony R, Sheets K, Winkler JW, Petasis NA, Serhan CN, Bazan NG (2010) Neuroprotectin D1/protectin D1 stereoselective and specific binding with human retinal pigment epithelial cells and neutrophils. Prostaglandins Leukot Essent Fatty Acids 82:27–34

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mark RJ, Lovell MA, Markesbery WR, Uchida K, Mattson MP (1997) A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J Neurochem 68:255–264

    CAS  PubMed  Google Scholar 

  • Marques C, Pereira P, Taylor A, Liang JN, Reddy VN, Szweda LI, Shang F (2004) Ubiquitin-dependent lysosomal degradation of the HNE-modified proteins in lens epithelial cells. FASEB J 18:1424–1426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mason MG, Nicholls P, Wilson MT, Cooper CE (2006) Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. Proc Natl Acad Sci USA 103:708–713

    CAS  PubMed  Google Scholar 

  • Milne GL, Gao B, Terry ES, Zackert WL, Sanchez SC (2013) Measurement of F2- isoprostanes and isofurans using gas chromatography-mass spectrometry. Free Rad Biol Med 59:36–44

    CAS  PubMed  Google Scholar 

  • Minghetti L, Greco A, Cardone F, Puopolo M, Ladogana A, Almonti S, Cunningham C, Perry VH, Pocchiari M, Levi G (2000) Increased brain synthesis of prostaglandin E2 and F2-isoprostane in human and experimental transmissible spongiform encephalopathies. J Neuropathol Exp Neurol 59:866–871

    CAS  PubMed  Google Scholar 

  • Montine TJ, Beal MF, Robertson D, Cudkowicz ME, Biaggioni I, O’Donnell H, Zackert WE, Roberts LJ, Morrow JD (1999) Cerebrospinal fluid F2-isoprostanes are elevated in Huntington’s disease. Neurology 52:1104–1105

    CAS  PubMed  Google Scholar 

  • Montine TJ, Quinn J, Kaye J, Morrow JD (2007) F(2)-isoprostanes as biomarkers of late-onset Alzheimer’s disease. J Mol Neurosci 33:114–119

    CAS  PubMed  Google Scholar 

  • Montuschi P, Barnes P, Roberts LJ II (2007) Insights into oxidative stress: The isoprostanes. Curr Medicinal Chem 14:703–717

    CAS  Google Scholar 

  • Morrow JD, Hill KE, Burk RF, Nammour TM, Badr KF, Roberts LJ (1991) Formation of unique biologically active prostaglandins in vivo by a non-cyclooxygenase free radical catalyzed mechanism. Adv Prostaglandin Thromboxane Leukot Res 21A:125–128

    CAS  PubMed  Google Scholar 

  • Morrow JD, Tapper AR, Zackert WE, Yang J, Sanchez SC, Montine TJ, Roberts LJ II (1999) Formation of novel isoprostane-like compounds from docosahexaenoic acid. Adv Exp Med Biol 469:343–347

    CAS  PubMed  Google Scholar 

  • Mukherjee PK, Marcheselli VL, Serhan CN, Bazan NG (2004) Neuroprotectin D1: a docosahexaenoic acid-derived docosatriene protects human retinal pigment epithelial cells from oxidative stress. Proc Natl Acad Sci U S A 101:8491–8496

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    CAS  PubMed Central  PubMed  Google Scholar 

  • Musiek ES, Breeding RS, Milne GL, Zanoni G, Morrow JD, McLaughlin B (2006) Cyclopentenone isoprostanes are novel bioactive products of lipid oxidation which enhance neurodegeneration. J Neurochem 97:1301–1313

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neely MD, Sidell KR, Graham DG, Montine TJ (1999) The lipid peroxidation product 4-hydroxynonenal inhibits neurite outgrowth, disrupts neuronal microtubules, and modifies cellular tubulin. J Neurochem 72:2323–2333

    CAS  PubMed  Google Scholar 

  • Negre-Salvayre A, Coatrieux C, Ingueneau C, Salvayre R (2008) Advanced lipid peroxidation end products in oxidative damage to proteins. Potential role in diseases and therapeutic prospects for the inhibitors. Br J Pharmacol 153:6–20

    CAS  PubMed  Google Scholar 

  • Niemoller TD, Bazan NG (2010) Docosahexaenoic acid neurolipidomics. Prostaglandins Other Lipid Mediat 91:85–89

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ohira T, Arita M, Omori K, Recchiuti A, Van Dyke TE, Serhan CN (2010) Resolvin E1 receptor activation signals phosphorylation and phagocytosis. J Biol Chem 285:3451–3461

    CAS  PubMed  Google Scholar 

  • Oner-Iyidoğan Y, Koçak H, Gürdöl F, Koçak T, Erol B (2004) Urine 8-isoprostane F2 alpha concentrations in patients with neurogenic bladder due to spinal cord injury. Clin Chim Acta 339:43–47

    PubMed  Google Scholar 

  • Opere CA, Zheng WD, Huang JF, Adewale A, Kruglet M, Ohia SE (2005) Dual effect of isoprostanes on the release of [3H]D-aspartate from isolated bovine retinae: role of arachidonic acid metabolites. Neurochem Res 30:129–137

    CAS  PubMed  Google Scholar 

  • Ott M, Gogvadze V, Orrenius S, Zhivotovsky B (2007) Mitochondria, oxidative stress and cell death. Apoptosis 12:913–922

    CAS  PubMed  Google Scholar 

  • Ou Z, Zhao X, Labiche LA, Strong R, Grotta JC, Hermann O, Aronowski J (2006) Neuronal expression of peroxisome proliferator-activated receptor-gamma (PPARgamma) and 15d-prostaglandin J2-mediated protection of brain after experimental cerebral ischemia in rat. Brain Res Jun 2:196–203

    Google Scholar 

  • Palacios-Pelaez R, Lukiw WJ, Bazan NG (2010) Omega-3 essential fatty acids modulate initiation and progression of neurodegenerative disease. Mol Neurobiol 41:367–374

    CAS  PubMed  Google Scholar 

  • Pereira MP, Hurtado O, Cárdenas A, Boscá L, Castillo J et al (2006) Rosiglitazone and 15-deoxy-Delta12,14-prostaglandin J2 cause potent neuroprotection after experimental stroke through noncompletely overlapping mechanisms. J Cereb Blood Flow Metab Feb 2:218–229

    Google Scholar 

  • Perluigi M, Fai Poon H, Hensley K, Pierce WM, Klein JB, Calabrese V, De Marco C, Butterfield DA (2005) Proteomic analysis of 4-hydroxy-2-nonenal-modified proteins in G93A-SOD1 transgenic mice—a model of familial amyotrophic lateral sclerosis. Free Radic Biol Med 38:960–968

    CAS  PubMed  Google Scholar 

  • Petersen DR, Doorn JA (2004) Reactions of 4-hydroxynonenal with proteins and cellular targets. Free Radic Biol Med 37:937–945

    CAS  PubMed  Google Scholar 

  • Phillis JW, Horrocks LA, Farooqui AA (2006) Cyclooxygenases, lipoxygenases, and epoxygenases in CNS: their role and involvement in neurological disorders. Brain Res Rev 52:201–243

    CAS  PubMed  Google Scholar 

  • Picklo MJ, Amarnath V, McIntyre JO, Graham DG, Montine TJ (1999) 4-Hydroxy-2(E)-nonenal inhibits CNS mitochondrial respiration at multiple sites. J Neurochem 72:1617–1624

    CAS  PubMed  Google Scholar 

  • Pizzimenti S, Ciamporcero E, Daga M, Pettazzoni P, Arcaro A, Cetrangolo G, Minelli R, Dianzani C, Lepore A, Gentile F, Barrera G (2013) Interaction of aldehydes derived from lipid peroxidation and membrane proteins. Front Physiol 4:242

    PubMed Central  PubMed  Google Scholar 

  • Poliak S, Peles E (2003) The local differentiation of myelinated axons at nodes of Ranvier. Nat Rev Neurosci 4:968–980

    CAS  PubMed  Google Scholar 

  • Pratico D, Smyth EM, Violi F, FitzGerald GA (1997) Local amplification of platelet function by 8-Epi prostaglandin F2alpha is not mediated by thromboxane receptor isoforms. J Biol Chem 271:14916–14924

    Google Scholar 

  • Quintero M, Colombo SL, Godfrey A, Moncada S (2006) Mitochondria as signaling organelles in the vascular endothelium. Proc Natl Acad Sci U S A 103:5379–5384

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rashid R, Langfinger D, Wagner R, Schuchmann HP, Sonntag C (1999) Bleomycin versus OH-radical-induced malonaldehydic-product formation in DNA. Int J Radiat Biol 75:101–109

    CAS  PubMed  Google Scholar 

  • Rio D, Stewart AJ, Pellegrini N (2005) A review of recent studies on malondialdehyde as toxic molecule and biological marker of oxidative stress. Nutr Metab Cardiovasc Dis 15:316–328

    PubMed  Google Scholar 

  • Roberts LJ II, Fessel JP, Davies SS (2005) The biochemistry of the isoprostane, neuroprostane, and isofuran pathways of lipid peroxidation. Brain Pathol 15:143–148

    CAS  PubMed  Google Scholar 

  • Russell AP, Gastaldi G, Bobbioni-Harsch E, Arboit P, Gobelet C, Dériaz O, Golay A, Witztum JL, Giacobino JP (2003) Lipid peroxidation in skeletal muscle of obese as compared to endurance-trained humans: a case of good vs. bad lipids? FEBS Lett 551:104–106

    CAS  PubMed  Google Scholar 

  • Rustin P (2002) Mitochondria, from cell death to proliferation. Nat Genet 30:352–353

    CAS  PubMed  Google Scholar 

  • Ryu MH, Sohn HS, Heo YR, Moustaid-Moussa N, Cha YS (2005) Differential regulation of hepatic gene expression by starvation versus refeeding following a high-sucrose or high-fat diet. Nutrition 21:543–552

    CAS  PubMed  Google Scholar 

  • Sarti P, Forte E, Giuffre A, Mastronicola D, Magnifico MC, Arese M (2012) The chemical interplay between nitric oxide and mitochondrial cytochrome c oxidase: Reactions, effectors and pathophysiology. Int J Cell Biol 2012:571067

    PubMed Central  PubMed  Google Scholar 

  • Seiler N (2000) Oxidation of polyamines and brain injury. Neurochem Res 25:471–490

    CAS  PubMed  Google Scholar 

  • Selley ML (1998) (E)-4-hydroxy-2-nonenal may be involved in the pathogenesis of Parkinson’s disease. Free Radic Biol Med 25:169–174

    CAS  PubMed  Google Scholar 

  • Selley ML, Bartlett MR, McGuiness JA, Hapel AJ, Ardlie NG (1989) Determination of the lipid peroxidation product trans-4-hydroxy-2-nonenal in biological samples by high-performance liquid chromatography and combined capillary column gas chromatography-negative-ion chemical ionisation mass spectrometry. J Chromatog 488:329–340

    CAS  Google Scholar 

  • Serhan CN (2005) Novel ω-3-derived local mediators in anti-inflammation and resolution. Pharmacol Ther 105:7–21

    CAS  PubMed  Google Scholar 

  • Serhan CN, Chiang N, Van Dyke TE (2008) Resolving inflammation: dual anti-inflammatory and pro-resolution lipid mediators. Nat Rev Immunol 8:349–361

    CAS  PubMed Central  PubMed  Google Scholar 

  • Serhan CN, Yang R, Martinod K, Kasuga K, Pillai PS, Porter TF, Oh SF, Spite M (2009) Maresins: novel macrophage mediators with potent antiinflammatory and proresolving actions. J Exp Med 206:15–23

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shi R, Rickett T, Sun W (2011a) Acrolein-mediated injury in nervous system trauma and diseases. Mol Nutr Food Res 55:1320–1331

    CAS  Google Scholar 

  • Shi Y, Sun W, McBride JJ, Cheng JX, Shi R (2011b) Acrolein induces myelin damage in mammalian spinal cord. J Neurochem 117:554–564

    CAS  Google Scholar 

  • Shibata N, Inose Y, Toi S, Hiroi A, Yamamoto T, Kobayashi M (2010) Involvement of 4-hydroxy-2-nonenal accumulation in multiple system atrophy. Acta Histochem Cytochem 43:69–75

    CAS  PubMed Central  PubMed  Google Scholar 

  • Singh M, Dang TN, Arseneault M, Ramassamy C (2010) Role of by-products of lipid oxidation in Alzheimer’s disease brain: a focus on acrolein. J Alzheimer Disease 21:741–756

    CAS  Google Scholar 

  • Skulachev VP (1994) Chemiosmotic concept of the membrane bioenergetics: what is already clear and what is still waiting for elucidation? J Bioenerg Biomembr 26:589–598

    CAS  PubMed  Google Scholar 

  • Skulachev VP (1998) Uncoupling: new approaches to an old problem of bioenergetics. Biochim Biophys Acta 1363:100–124

    CAS  PubMed  Google Scholar 

  • Springer JE, Azbill RD, Mark RJ, Begley JG, Waeg G, Mattson MP (1997) 4-hydroxynonenal, a lipid peroxidation product, rapidly accumulates following traumatic spinal cord injury and inhibits glutamate uptake. J Neurochem 68:2469–2476

    CAS  PubMed  Google Scholar 

  • Steed MM, Tyagi SC (2011) Mechanisms of cardiovascular remodeling in hyperhomocysteinemia. Antioxid Redox Signal 15:1927–1943

    CAS  PubMed  Google Scholar 

  • Steinberg D (1997) Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 272:20963–20966

    CAS  PubMed  Google Scholar 

  • Straus DS, Glass CK (2001) Cyclopentenone prostaglandins: new insights on biological activities and cellular targets. Med Res Rev 21:185–210

    CAS  PubMed  Google Scholar 

  • Sullivan CB, Matafonova E, Roberts LJ 2nd, Amarnath V, Davies SS (2010) Isoketals form cytotoxic phosphatidylethanolamine adducts in cells. J Lipid Res 51:999–1009

    CAS  PubMed  Google Scholar 

  • Trevisani M, Siemens J, Materazzi S, Bautista DM, Nassini R, Campi B, Imamachi N, Andrè E, Patacchini R, Cottrell GS, Gatti R, Basbaum AI, Bunnett NW, Julius D, Geppetti P (2007) 4-Hydroxynonenal, an endogenous aldehyde, causes pain and neurogenic inflammation through activation of the irritant receptor TRPA1. Proc Natl Acad Sci U S A 104:13519–13524

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tidball JG, Wehling-Henricks M (2007) The role of free radicals in the pathophysiology of muscular dystrophy. J Appl Physiol 102:1677–1686

    CAS  PubMed  Google Scholar 

  • Uchida K (1999) Current status of acrolein as a lipid peroxidation product. Trends Cardiovasc Med 9:109–113

    CAS  PubMed  Google Scholar 

  • Vincent HK, Powers SK, Dirks AJ, Scarpace PJ (2001) Mechanism for obesity-induced increase in myocardial lipid peroxidation. Int J Obes Relat Metab Disord 25:378–388

    CAS  PubMed  Google Scholar 

  • Wang Z, Dou X, Gu D, Shen C, Yao T, Niguyen V, Braunschweig C, Song Z (2012) 4-Hydroxynonenal differentially regulates adiponectin gene expression and secretion via activating PPARγ and accelerating ubiquitin-proteasome degradation. Mol Cell Endocrinol 349:222–231

    CAS  PubMed  Google Scholar 

  • West JD, Marnett LJ (2005) Alterations in gene expression induced by the lipid peroxidation product, 4-hydroxy-2-nonenal. Chem Res Toxicol 18:1642–1653

    CAS  PubMed  Google Scholar 

  • Witz G (1989) Biological interactions of alpha, beta-unsaturated aldehydes. Free Radic Biol Med 7:333–349

    CAS  PubMed  Google Scholar 

  • Xu ZZ, Zhang L, Liu T, Park JY, Berta T, Yang R, Serhan CN, Ji RR (2010) Resolvins RvE1 and RvD1 attenuate inflammatory pain via central and peripheral actions. Nat Med 16:592–597

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang JH, Yang ES, Park JW (2004) Inactivation of NADP+-dependent isocitrate dehydrogenase by lipid peroxidation products. Free Radic Res 38:241–249

    CAS  PubMed  Google Scholar 

  • Yin F, Sancheti H, Cadenas E (2012) Mitochondrial thiols in the regulation of cell death pathways. Antioxid Redox Signal 17:1714–1727

    CAS  PubMed  Google Scholar 

  • Zarkovic K (2003) 4-hydroxynonenal and neurodegenerative diseases. Mol Aspects Med 24:293–303

    CAS  PubMed  Google Scholar 

  • Zeiger SL, Musiek ES, Zanoni G, Vidari G, Morrow JD, Milne GJ, McLaughlin B (2009) Neurotoxic lipid peroxidation species formed by ischemic stroke increase injury. Free Radic Biol Med 47:1422–1431

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang D, Dhillon HS, Mattson MP, Yurek DM, Prasad RM (1999) Immunohistochemical detection of the lipid peroxidation product 4-hydroxynonenal after experimental brain injury in the rat. Neurosci Lett 272:57–61

    CAS  PubMed  Google Scholar 

  • Zhang H, Liu H, Dickinson DA, Liu RM, Postlethwait EM, Laperche Y, Forman HJ (2006) γ-Glutamyl transpeptidase is induced by 4-hydroxynonenal via EpRE/Nrf2 signaling in rat epithelial type II cells. Free Radic Biol Med 40:1281–1292

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akhlaq A. Farooqui .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Farooqui, A. (2014). Contribution of Dietary Fat in the Induction of Oxidative Stress. In: Inflammation and Oxidative Stress in Neurological Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-04111-7_7

Download citation

Publish with us

Policies and ethics