Skip to main content
Book cover

Soil Carbon pp 209–216Cite as

Could Soil Acidity Enhance Sequestration of Organic Carbon in Soils?

  • Chapter
  • First Online:

Part of the book series: Progress in Soil Science ((PROSOIL))

Abstract

On the basis of field and laboratory measurements of the dynamics of soil organic matter (SOM) in Japan, Thailand, Indonesia, Kazakhstan, and Ukraine having different soil pH levels, we postulate that soil acidity plays an important role in the accumulation of SOM through two processes. Firstly, the amount of potentially mineralizable C (C 0) in the acid soils of Kalimantan or light-fraction C in the Japanese acid soils often increased drastically. Hence, it seems that high soil acidity can enhance the accumulation of organic materials in surface soils by decreasing the soil microbial activities for SOM decomposition. Secondly, field measurements of C flux in various soils under forest showed that the internal leaching of dissolved organic carbon (DOC) from litter layers or surface soils increased under low pH conditions, typically for Humods in Japan and Udults in Kalimantan. This indicates a downward movement of DOC in acid soils that increases the tendency of the subsoils to accumulate SOM as organo-mineral complexes. It is concluded that high soil acidity can enhance the storage level of soil organic materials in the form of readily mineralizable organic materials in the surface soils and by organo-mineral complexes formed in subsoils as a result of accelerated leaching of DOC from the O horizon.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Craswell ET, Lefroy RDB (2001) The role and function of organic matter in tropical soils. Nutr Cycl Agroecosyst 61:7–18

    Article  Google Scholar 

  • Do Nascimento NR, Fritsch E, Bueno GT, Bardy M, Grimaldi C, Melfi AJ (2008) Podzolization as a deferralitization process: dynamics and chemistry of ground and surface waters in an Acrisol-Podzol sequence of the upper Amazon Basin. Eur J Soil Sci 59:911–924

    Article  CAS  Google Scholar 

  • Fujii K, Uemura M, Hayakawa C, Funakawa S, Sukartiningsih KT, Ohta S (2009) Fluxes of dissolved organic carbon in two tropical forest ecosystems of East Kalimantan, Indonesia. Geoderma 152:127–136

    Article  CAS  Google Scholar 

  • Funakawa S, Shinjo H, Kadono A, Kosaki T (2010) Factors controlling in situ decomposition rate of soil organic matter under various bioclimatic conditions of Eurasia. Pedologist 53:50–66

    CAS  Google Scholar 

  • Jenkinson DS (1990) The turnover of organic carbon and nitrogen in soil. Philos Trans R Soc B 329:361–368

    Article  CAS  Google Scholar 

  • Johnson CE, Driscoll CT, Siccama TG, Likens GE (2000) Element fluxes and landscape position in a northern hardwood forest watershed ecosystem. Ecosystems 3:159–184

    Article  CAS  Google Scholar 

  • Kadono A, Funakawa S, Kosaki T (2009) Factors controlling potentially mineralizable and recalcitrant soil organic matter in humid Asia. Soil Sci Plant Nutr 55(2):243–251

    Article  CAS  Google Scholar 

  • Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277–304

    Article  CAS  Google Scholar 

  • Kalbitz K, Schwesig D, Schmerwitz J, Kaiser K, Haumaier L, Glaser B, Ellerbrock R, Leinweber P (2003) Changes in properties of soil-derived dissolved organic matter induced by biodegradation. Soil Biol Biochem 35:1129–1142

    Article  CAS  Google Scholar 

  • Kalbitz K, Kaiser K, Bargholz J, Dardenne P (2006) Lignin degradation controls the production of dissolved organic matter in decomposing foliar litter. Eur J Soil Sci 57:504–516

    Article  CAS  Google Scholar 

  • Kemmitt SJ, Wright D, Goulding KWT, Jones DL (2006) pH regulation of carbon and nitrogen dynamics in two agricultural soils. Soil Biol Biochem 38:898–911

    Article  CAS  Google Scholar 

  • Kleber M, Schwendenmann L, Veldkamp E, Röbner J, Jahn R (2007) Halloysite versus gibbsite: Silicon cycling as a pedogenetic process in two lowland neotropical rain forest soils of La Selva, Costa Rica. Geoderma 138:1–11

    Article  CAS  Google Scholar 

  • Lal R (2004) Carbon sequestration in soils of central Asia. Land Degrad Develop 15:563–572

    Article  Google Scholar 

  • Moore TR (1989) Dynamics of dissolved organic carbon in forested and disturbed catchments, Westland, New Zealand. 1. Maimai. Water Resour Res 25:1321–1330

    Article  CAS  Google Scholar 

  • Moore TR, Jackson RJ (1989) Dynamics of dissolved organic carbon in forested and disturbed catchments, Westland, New Zealand. 2. Larry River. Water Resour Res 25:1331–1339

    Article  CAS  Google Scholar 

  • Parton WJ, Schimel DS, Cole CV, Ojima DS (1987) Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci Soc Am J 51:1173–1179

    Article  CAS  Google Scholar 

  • Paul EA, Collins HP (1998) The characteristics of soil organic matter relative to nutrient cycling. In: Lal R, Blum WH, Valentine C, Stewart BA (eds) Methods for assessment of soil degradation. CRC Press, Boca Raton

    Google Scholar 

  • Qualls RG, Haines BL, Swank WT (1991) Fluxes of dissolved organic nutrients and humic substances in a deciduous forest. Ecology 72:254–266

    Article  Google Scholar 

  • Raich JW, Russell AE, Bedoya-Arrieta R (2007) Lignin and enhanced litter turnover in tree plantations of lowland Costa Rica. For Ecol Manage 239:128–135

    Article  Google Scholar 

  • Saggar S, Parshotam A, Hedley C, Salt G (1999) 14C-labelled glucose turnover in New Zealand soils. Soil Biol Biochem 31:2025–2037

    Article  CAS  Google Scholar 

  • Schwendenmann L, Veldkamp E (2005) The role of dissolved organic carbon, dissolved organic nitrogen, and dissolved inorganic nitrogen in a tropical wet forest ecosystem. Ecosystems 8:339–351

    Article  CAS  Google Scholar 

  • Soil Survey Staff (2006) Keys to soil taxonomy, 10th edn. U.S. Government Printing Office, Washington, DC

    Google Scholar 

  • SPSS Inc. (2002) SigmaPlot 8.0 user’s guide. SPSS Inc., Chicago, p 526

    Google Scholar 

  • Spycher G, Sollins P, Rose S (1983) Carbon and nitrogen in the light fraction of a forest soil: vertical distribution and seasonal patterns. Soil Sci 135:79–87

    Article  CAS  Google Scholar 

  • Tobón C, Sevink J, Verstraten JM (2004a) Litterflow chemistry and nutrient uptake from the forest floor in northern Amazonian forest ecosytems. Biogeochemistry 69:315–339

    Article  Google Scholar 

  • Tobón C, Sevink J, Verstraten JM (2004b) Solute fluxes in throughfall and stemflow in four forest ecosystems in northwest Amazonia. Biogeochemistry 70:1–25

    Article  Google Scholar 

  • Ugolini FC, Dahlgren RA (1987) The mechanism of podzolization revealed by soil solution studies. In: Righi D, Chauvel A (eds) Podzols and podzolization. Assoc. Franc. Etude Sol. INRA, Plaisir et Paris, pp 195–203

    Google Scholar 

  • Yavitt JB, Fahey TJ (1986) Litter decay and leaching from the forest floor in Pinus contorta (lodgepole pine). Ecosystems 74:525–545

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Funakawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Funakawa, S., Fujii, K., Kadono, A., Watanabe, T., Kosaki, T. (2014). Could Soil Acidity Enhance Sequestration of Organic Carbon in Soils?. In: Hartemink, A., McSweeney, K. (eds) Soil Carbon. Progress in Soil Science. Springer, Cham. https://doi.org/10.1007/978-3-319-04084-4_22

Download citation

Publish with us

Policies and ethics