Skip to main content

Self-Amplified Spontaneous Emission and FEL Seeding

  • Chapter
  • First Online:
Free-Electron Lasers in the Ultraviolet and X-Ray Regime

Part of the book series: Springer Tracts in Modern Physics ((STMP,volume 258))

  • 6254 Accesses

Abstract

For wavelengths in the extreme ultraviolet and X-ray regime the start-up of the FEL process by seed radiation is hampered by the lack of lasers with the desired wavelength. Seeding by a high harmonic of an optical or infrared laser is a possibility which has been realized in recent years, see Sect. 7.4, where also other seeding schemes are described. The process of Self-Amplified Spontaneous Emission (SASE) permits the start-up of lasing at an arbitrary wavelength, without the need of external radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Transition radiation is produced when relativistic particles cross the boundary between two media of different refractive indices. The radiation emitted in backward direction is in the visible and infrared range. Optical transition radiation (OTR) is frequently applied at electron accelerators to obtain images of the beam cross section, see Sect. 8.9. The radiation is usually incoherent because in most cases the bunch is much longer than the optical wavelength. Coherent optical transition radiation with a much increased intensity will be generated if the bunch possesses a periodic density modulation with the period being equal to the optical wavelength.

References

  1. A.M. Kondratenko, E.L. Saldin, Generation of coherent radiation by a relativistic electron beam in an ondulator. Part. Accel. 10, 207 (1980)

    Google Scholar 

  2. R. Bonifacio, C. Pellegrini, L.M. Narducci, Collective instabilities and high-gain regime in a free electron laser. Opt. Comm. 50, 373 (1984)

    Article  ADS  Google Scholar 

  3. K.-J. Kim, Three-dimensional analysis of coherent amplification and self-amplified spontaneous emission in free-electron lasers Phys. Rev. Lett. 57, 1871 (1986)

    Article  ADS  Google Scholar 

  4. K.-J. Kim, An analysis of self-amplified spontaneous emission. Nucl. Instrum. Meth. A 250, 396 (1986)

    Article  ADS  Google Scholar 

  5. Z. Huang, K.-J. Kim, Review of x-ray free-electron laser theory. Phys. Rev. ST Accel. Beams 10, 034801 (2007)

    Article  ADS  Google Scholar 

  6. M. Hogan et al., Measurements of high gain and intensity fluctuations in a SASE free-electron laser. Phys. Rev. Lett. 80, 289 (1998)

    Article  ADS  Google Scholar 

  7. M. Hogan et al., Measurements of gain larger than \(10^5\) at \(12\,\mu \)m in a self amplified spontaneous-emission free-electron laser. Phys. Rev. Lett. 81, 4867 (1998)

    Article  ADS  Google Scholar 

  8. S.V. Milton et al., Exponential gain and saturation of a self-amplified spontaneous emission free-electron laser. Science 292, 2037 (2001)

    Article  ADS  Google Scholar 

  9. A.H. Lumpkin et al., Evidence for microbunching sidebands in a saturated free-electron laser using coherent optical transition radiation. Phys. Rev. Lett. 88, 234801 (2002)

    Article  ADS  Google Scholar 

  10. J. Andruszkow et al., First observation of self-amplified spontaneous emission in a free-electron laser at 109 nm wavelength. Phys. Rev. Lett. 85, 3825 (2000)

    Article  ADS  Google Scholar 

  11. V. Ayvazyan et al., Generation of GW radiation pulses from a VUV free-electron laser operating in the femtosecond regime. Phys. Rev. Lett. 88, 104802 (2002)

    Article  ADS  Google Scholar 

  12. V. Ayvazyan et al., A new powerful source for VUV radiation: demonstration of exponential growth and saturation at the TTF free-electron laser. Eur. Phys. J. D 20, 149 (2002)

    Article  ADS  Google Scholar 

  13. W. Ackermann et al., Operation of a free-electron laser from the extreme ultraviolet to the water window. Nat. Photonics 1, 339 (2007)

    Article  ADS  Google Scholar 

  14. V. Ayvazyan et al., First operation of a free-electron laser generating GW power radiation at 32 nm wavelength. Eur. Phys. J. D 37, 297 (2006)

    Article  ADS  Google Scholar 

  15. A. Tremaine et al., Experimental characterization of nonlinear harmonic radiation from a visible self-amplified spontaneous emission free-electron laser at saturation. Phys. Rev. Lett. 88, 204801 (2002)

    Article  ADS  Google Scholar 

  16. L. DiMauro et al., First SASE and seeded FEL lasing of the NSLS DUV FEL at 266 and 400 nm. Nucl. Instr. Meth. A 507, 15 (2003)

    Article  ADS  Google Scholar 

  17. T. Shintake, in Status of Japanese XFEL project and SSCS test accelerator, invited paper. FEL Conference, Berlin (2006)

    Google Scholar 

  18. R. Ischebeck, Transverse coherence of a VUV free electron laser, Ph. D. Thesis, University of Hamburg 2003, DESY-Thesis-2003-033

    Google Scholar 

  19. R. Ischebeck et al., Study of the transverse coherence at the TTF free electron laser. Nucl. Instr. Meth. A 507, 175 (2003)

    Article  ADS  Google Scholar 

  20. C. Behrens et al., Constraints on photon pulse duration from longitudinal electron beam diagnostics at a soft x-ray free-electron laser. Phys. Rev. ST Acc. Beams 15, 030707 (2012)

    Article  ADS  Google Scholar 

  21. K.-J. Kim, Z. Huang, R. Lindberg, in Principles of Free Electron Lasers. Lecture Notes, US Particle Accelerator School (to be published)

    Google Scholar 

  22. M.V. Klein, T.E. Furtak, Optik (Springer, Heidelberg, 1988)

    Google Scholar 

  23. E.L. Saldin, E.A. Schneidmiller, M.V. Yurkov, The Physics of Free Electron Lasers (Springer, Heidelberg, 2000)

    Book  Google Scholar 

  24. A. Murokh et al., Properties of the ultrashort gain length, self-amplified spontaneous emission free-electron laser in the linear regime and saturation. Phys. Rev. E 67, 066501 (2003)

    Article  ADS  Google Scholar 

  25. A. Tremaine et al., Fundamental and harmonic microbunching in a high-gain self-amplified spontaneous-emission free-electron laser. Phys. Rev. E 66, 036503 (2002)

    Article  ADS  Google Scholar 

  26. G. Lambert et al., Injection of harmonics generated in gas in a free-electron laser providing intense and coherent extreme-ultraviolet light. Nat. Phys. 4, 296 (2008)

    Article  Google Scholar 

  27. T. Togashi et al., Extreme ultraviolet free electron laser seeded with high-order harmonic of Ti:sapphire laser. Opt. Express 19, 317 (2011)

    Article  ADS  Google Scholar 

  28. S. Ackermann et al., Observation of coherent 19 nm and 38 nm radiation at a free-electron laser directly seeded at 38 nm. Phys. Rev. Lett. 111, 114801 (2013)

    Article  ADS  Google Scholar 

  29. L.-H. Yu et al., First ultraviolet high-gain harmonic-generation free-electron laser. Phys. Rev. Lett. 91, 074801 (2003)

    Google Scholar 

  30. E. Allaria et al., Highly coherent and stable pulses from the FERMI seeded free-electron laser in the extreme ultraviolet. Nat. Photonics 6, 699 (Oct. 2012)

    Google Scholar 

  31. G. Stupakov, Using the beam-echo effect for generation of short-wavelength radiation. Phys. Rev. Lett. 102, 074801 (2009)

    Article  ADS  Google Scholar 

  32. D. Xiang, G. Stupakov, Echo-enabled harmonic generation free electron laser. Phys. Rev. ST Accel. Beams 12, 030702 (2009)

    Article  ADS  Google Scholar 

  33. D. Xiang et al., Demonstration of the echo-enabled harmonic generation technique for short-wavelength seeded free electron lasers. Phys. Rev. Lett. 105, 114801 (2010)

    Article  ADS  Google Scholar 

  34. Z.T. Zhao et al., First lasing of an echo-enabled harmonic generation free-electron laser. Nat. Photonics 6, 360 (2012)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Schmüser .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schmüser, P., Dohlus, M., Rossbach, J., Behrens, C. (2014). Self-Amplified Spontaneous Emission and FEL Seeding. In: Free-Electron Lasers in the Ultraviolet and X-Ray Regime. Springer Tracts in Modern Physics, vol 258. Springer, Cham. https://doi.org/10.1007/978-3-319-04081-3_7

Download citation

Publish with us

Policies and ethics