Fatigue Loading of a Ferritic Ductile Cast Iron: Damaging Characterization

  • Vittorio Di Cocco
  • Daniela Iacoviello
  • Francesco Iacoviello
  • Alessandra Rossi
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 15)


Ductile cast irons offer and interesting combination of overall mechanical properties and technological peculiarities, allowing to obtain a high castability (peculiar of cast irons) with good tensile strength and toughness values (peculiar of steels). This result is due to their chemical composition that allows to obtain graphite elements in nodular shape directly from the melt. Ductile cast iron mechanical properties are strongly influenced both by the matrix microstructure and by the graphite nodules. The role of these elements cannot be merely ascribed to a simple matrix-graphite “debonding” damaging mechanism, but, according to previously published results, this role is more complex. In this work, customized image processing procedures were optimized to analyze the evolution of the damaging micromechanisms in a fatigue loaded ferritic ductile cast iron, focusing the graphite elements.


Ferritic ductile cast iron Image analysis Damage characterization 


  1. 1.
    Berdin C, Dong MJ, Prioul C (2001) Local approach of damage and fracture toughness for nodular cast iron. Eng Fract Mech 68:1107–1117CrossRefGoogle Scholar
  2. 2.
    Cavallini M, Di Bartolomeo O, Iacoviello F (2008) Fatigue crack propagation damaging micromechanisms in ductile cast irons. Eng Fract Mech 75:694–704CrossRefGoogle Scholar
  3. 3.
    Chantier I, Bobet V, Billardon R, Hild F (2000) A probabilistic approach to predict the very high-cycle fatigue behaviour of spheroidal graphite cast iron structures. Fatigue Fract Eng Mater Struct 23:173–180CrossRefGoogle Scholar
  4. 4.
    Costa N, Machado N, Silva FS (2008) Influence of graphite nodules geometrical features on fatigue life of high-strength nodular cast iron. J Mater Eng Perform 17:352–362CrossRefGoogle Scholar
  5. 5.
    Dai PQ, He ZR, Zheng CM, Mao ZY (2001) In-situ SEM observation on the fracture of austempered ductile iron. Mater Sci Eng A 319–321:531–534CrossRefGoogle Scholar
  6. 6.
    De Santis A, Iacoviello D (2007) Discrete level set approach to image segmentation. SIViP 1(4):303–320CrossRefMATHGoogle Scholar
  7. 7.
    Di Cocco V, Iacoviello F, Rossi A, Iacoviello D (2012) Quantitative characterization of ferritic ductile iron damaging micromechanisms: fatigue loadings. In: Computational modelling of objects represented in images: fundamentals, methods and applications- III. Taylor & Francis, Oxford.Google Scholar
  8. 8.
    Gonzalez RC, Woods RE (2002) Digital image processing. Prentice Hall, New JerseyGoogle Scholar
  9. 9.
    Greno GL, Otegui JL, Boeri RE (1999) Mechanisms of fatigue crack growth in austempered ductile iron. Int J Fatigue 21:35–43CrossRefGoogle Scholar
  10. 10.
    Iacoviello F, Di Cocco V, Cavallini M (2010) Ductile cast irons: microstructure influence on fatigue crack propagation resistance. Frattura ed Integrità Strutturale 13:3–16Google Scholar
  11. 11.
    Jeckins LR, Forrest RD (1993), Properties and selection: iron, steels and high performance alloys. In: ASM handbook ductile iron, vol 1. Metal Park (OH), ASM. International, p 35.Google Scholar
  12. 12.
    Labrecque C, Gagne M (1998) Review ductile iron: fifty years of continuous development. Can Metall Quart 37:343–378Google Scholar
  13. 13.
    Otsu NA (1979) Threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybe 9:62–66CrossRefGoogle Scholar
  14. 14.
    Rabold F, Kuna M (2005) Cell model simulation of void growth in nodular cast iron under cyclic loading. Comput Mater Sci 32:489–497CrossRefGoogle Scholar
  15. 15.
    Šamec B, Potrc I, Šraml M (2011) Low cycle fatigue of nodular cast iron used for railway brake discs. Eng Fail Anal 18:1424–1434CrossRefGoogle Scholar
  16. 16.
    Shirani M, Härkegård G (2011) Fatigue life distribution and size effect in ductile cast iron for wind turbine components. Eng Fail Anal 18:12–24CrossRefGoogle Scholar
  17. 17.
    Stokes B, Gao N, Reed PAS (2007) Effects of graphite nodules on crack growth behaviour of austempered ductile iron. Mater Sci Eng A 445–446:374–385 .Google Scholar
  18. 18.
    Tokaji K, Ogawa T, Shamoto K (1994) Fatigue crack propagation in spheroidal-graphite cast irons with different microstructures. Fatigue 16:344–350CrossRefGoogle Scholar
  19. 19.
    Yang J, Putatunda SK (2005) Near threshold fatigue crack growth behavior of austempered ductile cast iron (ADI) processed by a novel two-step austempering process. Mater Sci Eng A 393:254–268CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Vittorio Di Cocco
    • 1
  • Daniela Iacoviello
    • 2
  • Francesco Iacoviello
    • 1
  • Alessandra Rossi
    • 1
  1. 1.Dipartimento di Ingegneria Civile e MeccanicaUniversità di Cassino e del Lazio MeridionaleCassinoItaly
  2. 2.Dipartimento di Ingegneria Informatica Automatica e Gestionale Antonio RubertiSapienza Università di RomaRomeItaly

Personalised recommendations