Fuzzy Image Segmentation: An Automatic Unsupervised Method

Chapter
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 15)

Abstract

A new method is here proposed for the unsupervised, automatic, global region segmentation of digital images, hereinafter referred to as the “Automatic Fuzzy Segmentation” (AFS). Starting from the fuzzy intensity-connectedness definition (\(\chi \) -connectedness) and the related growing mechanism, it allows a strict and very simple integration between the analysis of topological connectedness and grey level similarities of the pixels belonging to the same region. By overcoming the previous drawback due to the need of some seed points selection, an iterative processing is here developed, able to adapt to the image content. The automatic selection of seed points is driven by intermediate connectedness results which alternates the analysis of inter-region similarities with inter-region separation measurements. The robustness of the method with respect to the three required parameters is discussed. Example cases related to real application domains are here presented and discussed.

Keywords

Segmentation Fuzzy processing Connectedness MS lesion detection 

References

  1. 1.
    Angiati E, Minetti I, Dellepiane SG (2010) Multi-seed segmentation of tomographic volumes based on fuzzy connectedness. In: De-Shuang H (ed) Advanced intelligent computing theories and applications with aspects of artificial intelligence. Springer, Heidelberg, p 360–367Google Scholar
  2. 2.
    Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Kluwer Academic Publishers, NorwellGoogle Scholar
  3. 3.
    Bloch I (1993) Fuzzy connectivity and mathematical morphology. Pattern recogn Lett 14(6):483–488CrossRefMATHMathSciNetGoogle Scholar
  4. 4.
    Cocosco CA, Kollokian V, Kwan RK-S, Pike GB, Evans AC (1997) Brainweb: online interface to a 3D MRI simulated brain database. NeuroImage 5(4):425Google Scholar
  5. 5.
    Dellepiane SG (1991) Image segmentation: errors, sensitivity, and uncertainty. In: Proceedings of the annual international conference of the IEEE. Engineering in Medicine and Biology Society, vol 13, pp 253–254. 31 Oct–3 Nov 1991. doi: 10.1109/IEMBS.1991.683923
  6. 6.
    Dellepiane SG, Carbone V, Nardotto S (2012) An automatic unsupervised fuzzy method for image segmentation. In: Computational modeling of objects presented in images: fundamentals, methods and applications, p 307–312Google Scholar
  7. 7.
    Dellepiane SG, Fontana F (1995) Extraction of intensity connectedness for image processing. Pattern Recogn Lett 16(3):313–324CrossRefGoogle Scholar
  8. 8.
    Dellepiane SG, Fontana F, Vernazza GL (1996) Nonlinear image labeling for multivalued segmentation. IEEE Trans Image Process 5(3):429–446CrossRefGoogle Scholar
  9. 9.
    Gour CK, Laurence D, Mahbubur RS (2001) Review of fuzzy image segmentation techniques. In: Design and management of multimedia information systems: opportunities and challenges. Idea Group Publishing, HersheyGoogle Scholar
  10. 10.
    Kaufmann A (1977) Introduction à la théorie des sous-ensembles flous à l’usage des ingénieurs (fuzzy sets theory). MassonGoogle Scholar
  11. 11.
    Kim J, Fisher JW III, Yezzi A, Çetin M, Willsky AS (2005) A nonparametric statistical method for image segmentation using information theory and curve evolution. IEEE Trans Image Process 14(10):1486–1502CrossRefMathSciNetGoogle Scholar
  12. 12.
    Rosenfeld A (1983) On connectivity properties of grayscale pictures. Pattern Recogn 16(1):47–50CrossRefGoogle Scholar
  13. 13.
    Rosenfeld A (1984) The fuzzy geometry of image subsets. Pattern Recogn Lett 2(5):311–317CrossRefGoogle Scholar
  14. 14.
    Saha PK, Udupa JK (2001) Relative fuzzy connectedness among multiple objects: theory, algorithms, and applications in image segmentation. Comput Vis Image Underst 82(1):42–56CrossRefMATHGoogle Scholar
  15. 15.
    Serpico SB, Dellepiane S, Moser G, Angiati E, Boni G, Rudari R, Candela L (2012) Extracting information from remote sensing data for applications to flood monitoring and damage evaluation. In: Advances in radar and remote sensing (TyWRRS), 2012 Tyrrhenian Workshop on IEEE, p 275–282Google Scholar
  16. 16.
    Shapiro L, Stockman G (2001) Computer vision (Chap. 12). New Jersey, Prentice HallGoogle Scholar
  17. 17.
    Udupa JK, Samarasekera S (1996) Fuzzy connectedness and object definition: theory, algorithms, and applications in image segmentation. Graph Models Image Process 58(3):246–261CrossRefGoogle Scholar
  18. 18.
    Vaccaro R, Smits PC, Dellepiane SG (2000) Exploiting spatial correlation features for SAR image analysis. IEEE Trans Geosci Remote Sens 38(3):1212–1223. doi: 10.1109/36.843013 CrossRefGoogle Scholar
  19. 19.
    Worth A (1996) The Internet brain segmentation repository (IBSR). http://www.cma.mgh.Harvard.edu/ibsr
  20. 20.
    Zhuge Y, Udupa JK, Saha PK (2006) Vectorial scale-based fuzzy-connected image segmentation. Comput Vis Image Underst 101(3):177–193CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Università degli Studi di GenovaGenovaItaly

Personalised recommendations