Can Numerical Modelling Help Surgeons in Abdominal Hernia Surgery?

  • Belén Hernández-Gascón
  • Estefanía Peña
  • Gemma Pascual
  • Juan M. Bellón
  • Begoña Calvo
Part of the Lecture Notes in Computational Vision and Biomechanics book series (LNCVB, volume 15)


The absence of universally and accepted guidelines to select the most appropriate surgical mesh for each patient and type of defect in hernia surgery could complicate surgeons decisions when choosing the surgical mesh and deciding which is the best orientation of the mesh in the abdomen. An interdisciplinary work between clinicians and engineers may lead to great advances in medical protocols through the development of computational methodologies which could reduce the long periods of time and high costs involved by experimental research procedures. Numerical simulations of hernia treatment could also allow a better knowledge of the post-operative condition. This work is projected to define a computational methodology based on experimental techniques that would help surgeons in deciding which prosthesis is the most convenient depending on the type of abdominal hernia defect and particularities of the patient so current treatments and procedures could be improved with regard to the quality of patient life.


Finite element model Hyperelasticity Surgical meshes 



This study was supported by the Spanish Ministry of Economy and Competitiveness through research project DPI2011-27939-C02-01/C02-02, the Spanish Ministry of Science and Innovation through research project DPI2011-15551-E and the Instituto de Salud Carlos III (ISCIII) through the CIBER initiative project ABDOMESH. B. Hernández-Gascón was also funded by a grant (BES-2009-021515) from the Spanish Ministry of Science and Technology.


  1. 1.
    Bauer JJ, Harris MT, Gorfine SR, Kreel I (2002) Rives-stoppa procedure for repair of large incisional hernias: experience with 57 patients. Hernia 6:120–123CrossRefGoogle Scholar
  2. 2.
    Bellón JM, Rodríguez M, García-Honduvilla N, Gómez-Gil V, Pascual G, Buján J (2009) Comparing the behavior of different polypropylene meshes (heavy and lightweight) in an experimental model of ventral hernia repair. J Biomed Mater Res Part B Appl Biomater 89B(2):448–455CrossRefGoogle Scholar
  3. 3.
    Cobb WS, Burns JM, Kercher KW, Matthews BD, Norton HJ, Heniford BT (2005) Normal intraabdominal pressure in healthy adults. J Surg Res 129:231–235CrossRefGoogle Scholar
  4. 4.
    Demiray H, Weizsacker HW, Pascale K, Erbay H (1988) A stress-strain relation for a rat abdominal aorta. J Biomech 21:369–374Google Scholar
  5. 5.
    Flory PJ (1961) Thermodynamic relations for high elastic materials. Trans Faraday Soc 57:829–838CrossRefMathSciNetGoogle Scholar
  6. 6.
    Hernández B, Peña E, Pascual G, Rodríguez M, Calvo B, Doblaré M, Bellón JM (2011) Mechanical and histological characterization of the abdominal muscle: a previous step to model hernia surgery. J Mech Behav Biomed Mater 4:392–404CrossRefGoogle Scholar
  7. 7.
    Hernández-Gascón B, Mena A, Peña E, Pascual G, Bellón JM, Calvo B (2013) Understanding the passive mechanical behavior of the human abdominal wall. Ann Biomed Eng 41(2):433–444Google Scholar
  8. 8.
    Hernández-Gascón, B, Peña E, Grasa J, Pascual G, Bellón JM, Calvo B (2013) Mechanical response of the herniated human abdomen to the placement of different prostheses. J Biomech Eng (135) 051004–8Google Scholar
  9. 9.
    Hernández-Gascón B, Peña E, Melero H, Pascual G, Doblaré M, Ginebra MP, Bellón JM, Calvo B (2011) Mechanical behaviour of synthetic surgical meshes: finite element simulation of the herniated abdominal wall. Acta Biomater 7:3905–3913Google Scholar
  10. 10.
    Holzapfel GA (2000) Nonlinear solid mechanics. Wiley, New YorkMATHGoogle Scholar
  11. 11.
    Holzapfel GA (2006) Determination of material models for arterial walls from uniaxial extension tests and histological structure. J Theor Biol 238:290–302CrossRefMathSciNetGoogle Scholar
  12. 12.
    Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Hwang W, Carvalho JC, Tarlovsky I, Boriek AM (2005) Passive mechanics of canine internal abdominal muscles. J Appl Physiol 98(5):1829–1835CrossRefGoogle Scholar
  14. 14.
    Junge K, Klinge U, Prescher A, Giboni P, Niewiera M, Shumpelick V (2001) Elasticity of the anterior abdominal wall and impact for reparation of incisional hernia using mesh implants. Hernia 5:112–118Google Scholar
  15. 15.
    Kauer M (2001) Inverse finite element characterization of soft tissues with aspiration experiments. Ph.D. thesis, Swiss Federal Institute of Technology, ZnrichGoogle Scholar
  16. 16.
    Kingsnorth A, LeBlanc K (2003) Hernias: inguinal and incisional. Lancet 362:1561–1574Google Scholar
  17. 17.
    Klinkel S, Govindjee S (2002) Using finite strain 3D-material models in beam and shell elements. Eng Comput 19(8):902–921CrossRefMATHGoogle Scholar
  18. 18.
    Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math 11:431–441Google Scholar
  19. 19.
    Martins P, Peña E, Jorge RMN, Santos A, Santos L, Mascarenhas T, Calvo B (2012) Mechanical characterization and constitutive modelling of the damage process in rectus sheath. J Mech Behav Biomed Mater 8:111–122Google Scholar
  20. 20.
    Moore W (2008) Gray’s Anatomy celebrates 150th anniversary. The Telegraph (Telegraph Media Group)Google Scholar
  21. 21.
    Nilsson T (1982) Biomechanical studies of rabbit abdominal wall. Part I. - The mechanical properties of specimens from different anatomical positions. J Biomech 15(2):123–129CrossRefGoogle Scholar
  22. 22.
    Nilsson T (1982) Biomechanical studies of rabbit abdominal wall. Part II.- The mechanical properties of specimens in relation to length, width, and fibre orientation. J Biomech 15(2):131–135CrossRefGoogle Scholar
  23. 23.
    Norasteh A, Ebrahimi E, Salavati M, Rafiei J, Abbasnejad E (2007) Reliability of B-mode ultrasonography for abdominal muscles in asymptomatic and patients with acute low back pain. J Bodywork Mov Ther 11:17–20CrossRefGoogle Scholar
  24. 24.
    Pascual G, Rodríguez M, Gómez-Gil V, García-Honduvilla N, Buján J, Bellón JM (2008) Early tissue incorporation and collagen deposition in lightweight polypropylene meshes: bioassay in an experimental model of ventral hernia. Surgery 144:427–435Google Scholar
  25. 25.
    Peña E, del Palomar AP, Calvo B, Martínez MA, Doblaré M (2007) Computational modelling of diarthrodial joints. Physiological, pathological and pos-surgery simulations. Arch Comput Methods Eng 14(1):47–91CrossRefMATHMathSciNetGoogle Scholar
  26. 26.
    Podwojewski F, Otténio M, Beillas P, Guérin G, Turquier F, Mitton D (2012) Mechanical response of animal abdominal walls in vitro: evaluation of the influence of a hernia defect and a repair with a mesh implanted intraperitoneally. J Biomech 46(3):561–566Google Scholar
  27. 27.
    Sabbagh C, Dumont F, Robert B, Badaoui R, Verhaeghe P, Regimbeau JM (2011) Peritoneal volume is predictive of tension-free fascia closure of large incisional hernias with loss of domain: a prospective study. Hernia 15(5):559–565CrossRefGoogle Scholar
  28. 28.
    Song C, Alijani A, Frank T, Hanna G, Cuschieri A (2006) Mechanical properties of the human abdominal wall measured in vivo during insufflation for laparoscopic surgery. Surg Endosc 20:987–990CrossRefGoogle Scholar
  29. 29.
    Weiss JA, Maker BN, Govindjee S (1996) Finite element implementation of incompressible, transversely isotropic hyperelasticity. Comput Methods Appl Mech Eng 135:107–128CrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Belén Hernández-Gascón
    • 1
    • 3
  • Estefanía Peña
    • 1
    • 3
  • Gemma Pascual
    • 2
    • 3
  • Juan M. Bellón
    • 2
    • 3
  • Begoña Calvo
    • 1
    • 3
  1. 1.Aragón Institute of Engineering Research (I3A)University of ZaragozaZaragozaSpain
  2. 2.Departament of Medical SpecialitiesUniversity of Alcalá, Campus Universitario Ctra. A-2, Km. 33.600HenaresSpain
  3. 3.Centro de Investigación Biomédica en Red en BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)ZaragozaSpain

Personalised recommendations