Skip to main content

Delamination and Debonding Growth in Composite Structures

  • Chapter
  • First Online:
Damage Growth in Aerospace Composites

Part of the book series: Springer Aerospace Technology ((SAT))

Abstract

The general trend in modern aircraft structures is the progressive replacement of metallic materials with composites, because of their superior structural properties. One of the typical failure modes of composite materials is interlaminar delaminations that degrade structural capacity and are prone to grow when compression and out-of-plane loads are applied to the structure. Bonded joints are quite often used in composites structures. These joints are complicated to analyse even for a simple strength prediction (high stress concentrations at its ends), of course progressive debonding is particularly complicated to simulate. The lack of accurate and reliable simulation methodologies for both problems, and the not-enough knowledge of the real damage mechanics in composites lead to conservative designs. Instituto Nacional de Técnica Aeroespacial (INTA), the Spanish research centre for aerospace is developing reliable simulation techniques for composites structural behaviour in the presence of damages such as interlaminar delaminations and debondings. These are able to perform Progressive Failure Analysis (PFA), are efficient from a computational point of view, and correct mesh size effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krueger, R.: The virtual crack closure technique: history, approach and applications. NASA/CR-2002-211628, ICASE Report No. 2002-10. ICASE, NASA Langley Research Center, Hampton, Virginia (2002)

    Google Scholar 

  2. Nilsson, K.-F., Asp, L.E., Alpman, J.E., Nystedt, L.: Delamination buckling and growth for delaminations at different depths in a slender composite panel. Int. J. Solids Struct. 38, 3039–3071 (2001)

    Article  MATH  Google Scholar 

  3. San Millán, J., Castañón, M., Armendáriz, I., Gonzalez, R., García-Martínez, J.: Simulation tools for progressive damage. NAFEMS World Congress, Crete (2009)

    Google Scholar 

  4. Krueger, R., Minguet, P.J., O’Brien, T.K.: Implementation of interlaminar fracture mechanics in design: an overview. In:14th International Conference on Composite Materials (ICCM-14), San Diego (2003)

    Google Scholar 

  5. Ullah, H., Harland, A.R., Lucas, T., Price, D., Silberschmidt, V.V.: Finite-element modelling of bending of CFRP laminates: multiple delaminations. Comput. Mater. Sci. 52, 147–156 (2012)

    Article  Google Scholar 

  6. Armendáriz, I., González, R., San Millán, J., García-Martínez, J.: Delamination growth in damage tolerance composite structures. In: 9th International Conference on Composite Science and Technology, Sorrento (2013)

    Google Scholar 

  7. Shokrieh, M.M., Rajabpour-Shirazi, H., Heidari-Rarani, M., Haghpanahi, M.: Simulation of mode I delamination propagation in multidirectional composites with R-curve effects using VCCT method. Comput. Mater. Sci. 65, 66–73 (2012)

    Article  Google Scholar 

  8. Liu, P.F., Hou, S.J., Chu, J.K., Hub, X.Y., Zhou, C.L., Liu, Y.L., Zheng, J.Y., Zhao, A., Yan, L.: Finite element analysis of postbuckling and delamination of composite laminates using virtual crack closure technique. Compos. Struct. 93, 1549–1560 (2011)

    Article  Google Scholar 

  9. Xie, D., Biggers Jr, S.B.: Progressive crack growth analysis using interface element based on the virtual crack closure technique. Finite Elem. Anal. Des. 42, 977–984 (2006)

    Article  Google Scholar 

  10. Davies, G.A.O., Hitchings, D., Ankersen, J.: Predicting delamination and debonding in modern aerospace composite structures. Compo. Sci. Technol. 66, 846–854 (2006)

    Article  Google Scholar 

  11. Chen, J., Crisfield, M., Kinloch, A., Busso, E., Mathews, F., Qiu, Y.: Predicting progressive delamination of composite material specimens via interface elements. Mech. Compos. Mater. Struct. 6, 301–317 (1999)

    Article  Google Scholar 

  12. Segurado, J., Llorca, J.: A new three-dimensional interface finite element to simulate fracture in composites. Int. J. Solids Struct. 41, 2977–2993 (2004)

    Article  MATH  Google Scholar 

  13. Elices, M., Guinea, G.V., Gómez, J., Planas, J.: The cohesive zone model: advantages, limitations and challenges. Eng. Fract. Mech. 69(2), 137–163 (2002)

    Google Scholar 

  14. Turon, A., Davila, C.G., Camanho, P.P., Costa, J.: An engineering solution for solving mesh size effects in the simulation of delamination with cohesive zone models. Eng. Fract. Mech. 74, 1665–1682 (2007)

    Google Scholar 

  15. San Millán, J., Vázquez, L., González, R., Matías, D., Vergniory, U.: Progressive failure of composite bonded joints. In: Proceedings of 3rd European Conference for AeroSpace Sciences (EUCASS) (2009)

    Google Scholar 

  16. MSC Nastran 2012: Linear Static Analysis, User’s Guide. MSC Software Corporation (2012)

    Google Scholar 

  17. MSC Nastran 2012: Quick Reference Guide. MSC Software Corporation (2012)

    Google Scholar 

  18. Rybicki, E.F., Kanniken, M.F.: A finite element calculation of stress intensity factors by a modified crack closure integral. Eng. Fract. Mech. 9(4), 931–938 (1977)

    Article  Google Scholar 

  19. Orifici, A.C., Krueger, Ronald: Benchmark assessment of automated delamination propagation capabilities in finite element codes for static loading. Finite Elem. Anal. Des. 54, 28–36 (2012)

    Article  Google Scholar 

  20. Leski, A.: Implementation of the virtual crack closure technique in engineering FE calculations. Finite Elem. Anal. Des. 43, 261–268 (2007)

    Article  Google Scholar 

  21. ASTM D 5528: Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites

    Google Scholar 

  22. ASTM D 6671: Standard Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites

    Google Scholar 

  23. Donaldson, S.L.: Fracture toughness testing of graphite/epoxy and graphite/peek composites. Composites 16(2), 103–112 (1985)

    Article  MathSciNet  Google Scholar 

  24. Orifici, A.C., Herszberg, I., Thomson, R.S.: Review of methodologies for composite material modelling incorporating failure. Compos. Struct. 86, 194–210 (2008)

    Article  Google Scholar 

  25. Greenhalgh, E., Meeks, C., Clarke, A., Thatcher, J.: The performance of post-buckled CFRP stringer-stiffened panels containing defects and damage. In: 44th AIAA Structures, Structural Dynamics and Materials Conference, Norfolk (2003)

    Google Scholar 

  26. Patran 2012 Reference Manual. Part 3: Finite Element Modeling. MSC Software Corporation (2012)

    Google Scholar 

  27. Marc 2012 User’s Guide. MSC Software Corporation (2012)

    Google Scholar 

  28. Marc 2012 Volume A: Theory and User Information. MSC Software Corporation (2012)

    Google Scholar 

  29. Dugdale, D.S.: Yielding of steel sheets containing slits. J. Mech. Phys. Solids 8, 100–104 (1960)

    Article  Google Scholar 

  30. Ruiz, G., Pandolfi, A., Ortiz, M.: Three dimensional cohesive modelling of dynamic mixed-mode facture. Int. J. Numer. Methods Eng. 52, 97–120 (2001)

    Article  Google Scholar 

  31. De Xie., Wass, A.M.: Discrete cohesive zone model for mixed-mode fracture using finite element analysis. Eng. Fract. Mech. 73(13), 1783–1796 (2006)

    Google Scholar 

  32. Bazant, Z.P., Planas, J.: Fracture and Size Effect in Concrete and Other Quasibrittle Materials. CRC Press, Boca Raton (1998)

    Google Scholar 

  33. Hillerborg, A., Modeer, M., Petersson, P.E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6, 773–781 (1976)

    Article  Google Scholar 

  34. Falk, M.L., Needleman, A., Rice, J.R.: A critical evaluation of cohesive zone models of dynamic fracture. J. Phys. IV France 11 Pr5, 43–50 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier San Millán .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Millán, J.S., Armendáriz, I. (2015). Delamination and Debonding Growth in Composite Structures. In: Riccio, A. (eds) Damage Growth in Aerospace Composites. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-04004-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04004-2_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04003-5

  • Online ISBN: 978-3-319-04004-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics