Skip to main content

Detailed Methodologies for Integrated Delamination Growth and Fiber-Matrix Damage Progression Simulation

  • Chapter
  • First Online:
Damage Growth in Aerospace Composites

Part of the book series: Springer Aerospace Technology ((SAT))

  • 2077 Accesses

Abstract

In previous years, significant progresses have been made in understanding failure mechanisms of composite materials such as delamination and fiber–-matrix breakage. Delaminations, which can arise during the manufacturing process or as a consequence of impacts from foreign objects, are probably the most investigated mode of failure in composite laminates. However, others damages such as matrix cracks, fiber–-matrix debonding, and fiber fractures can also appear in composite structures under service conditions. These different damage mechanisms are able to interact with each other and lead to a considerable reduction in stiffness and strength of local critical areas and consequently to the reduction of the load-carrying capability of the entire composite structure. These interactions can have a relevant role in particular for delaminated composite plates under compression. In this chapter, integrated numerical methodologies, considering simultaneously the presence of different damage mechanisms in composites, are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chai, H., Babcock, C.D., Knauss, W.G.: One dimensional modelling of failure in laminated plates by delamination buckling. Int. J. Solids Struct. 17, 1069–1083 (1981)

    Article  MATH  Google Scholar 

  2. Kardomates, G.A.: Large deformation effects in the postbuckling behaviour of composites with thin delaminations. AIAA J. 27, 624–631 (1987)

    Article  Google Scholar 

  3. Kardomates, G.A., Schmueser, D.W.: Buckling and post-buckling of delaminated composites under compressive loads including transverse shear effects. AIAA J. 27, 337–343 (1988)

    Article  Google Scholar 

  4. Ashizawa, M., Fast M.: Interlaminar fracture of a compressively loaded composite containing a defect. Paper presented to the fifth DoD/NASA conference on fibrous composites in structural design, New Orleans, LA, 27–29 Jan 1981

    Google Scholar 

  5. Ramkumar, R.L.: Fatigue degradation in compressively loaded composite laminates. NASA CR-16568 (1981)

    Google Scholar 

  6. Ramkumar, R.L.: Performance of a quantitative study of instability-related delamination growth. NASA CR-166046 (1983)

    Google Scholar 

  7. Byers, B.A.: Behaviour of damaged graphite/epoxy laminates under compression loading. NASA CR-159293 (1980)

    Google Scholar 

  8. Chai, H., Knauss, W.G., Babcock, C.D.: Observation of damage growth in compressively loaded laminates. J. Exp. Mech. 23(3), 329–337 (1983)

    Article  Google Scholar 

  9. Nilsson, K.-F., Asp, L.E., Alpman, J.E., Nystedt, L.: Delamination buckling and growth for delaminations at different depths in a slender composite panel. Int. J. Solids Struct. 38(17), 3039–3071 (2001)

    Article  MATH  Google Scholar 

  10. Whitcomb, J.D.: Approximate analysis of Postbuckled through-the-width delaminations. Compos. Technol. Rev. 4(3), 71–77 (1982)

    Article  Google Scholar 

  11. Whitcomb, J.D.: Parametric analytical study of instability-related delamination growth. Compos. Sci. Technol. 25(1), 18–48 (1986)

    Article  Google Scholar 

  12. Chai, H., Babcok, C.D., Knauss, W.G.: One delamination modelling of failure in laminated plates by delamination buckling. Int. J. Solids Struct. 17(1), 1069–1083 (1981)

    Article  MATH  Google Scholar 

  13. Fei, Z., Yin, W.L.: Postbuckling growth of a circular delamination in a laminate under compression and bending. In: Proceedings of the Twelfth South-eastern Conference on Theoretical and Applied Mechanics. Georgia Institute of Technology, Pine Mountain, Georgia (1984)

    Google Scholar 

  14. Shivakumar, K.N., Whitcomb, J.D.: Buckling of a sublaminate in a quasi-isotropic composite laminate. Int. J. Compos. Mater. 19, 2–18 (1985)

    Article  Google Scholar 

  15. Whitcomb, J.D., Shivakumar, K.N.: Strain-energy release rate analysis of a laminate with a postbuckled delamination. Numerical Methods in Fracture Mechanics. NASA TM-89091 (1987)

    Google Scholar 

  16. Kim, H.J., Hong, C.S.: Buckling and postbuckling behaviour of composite laminates with an embedded delamination. In: Proceedings of ICCM-10, Whistler (1995)

    Google Scholar 

  17. Whitcomb, J.D.: Analysis of a laminate with a postbuckled embedded delamination, including contact effects. Int. J. Compos. Mater. 26(10), 1523–1535 (1992)

    Article  Google Scholar 

  18. Whitcomb, J.D.: Three dimensional analysis of a postbuckled embedded delamination. Int. J. Compos. Mater. 23, 862–889 (1989)

    Article  Google Scholar 

  19. Perugini, P., Riccio, A., Scaramuzzino, F.: Influence of delamination growth and contact phenomena on the compressive behaviour of composite panels. Int. J. Compos. Mater. 33(15), 1433–1456 (1999)

    Article  Google Scholar 

  20. Riccio, A., Perugini, P., Scaramuzzino, F.: Modelling compression behaviour of delaminated composite panels. Comput. Struct. 78, 73–81 (2000)

    Article  Google Scholar 

  21. Nilsson, K.-F., Thesken, J.C., Sindelar, P., Giannakopoulos, A.E., Storakers, B.: A theoretical and experimental investigation of buckling induced delamination growth. J. Mech. Phys. Solids. 41(4), 749–782 (1993)

    Article  Google Scholar 

  22. Gaudenzi, P., Perugini, P., Riccio, A.: Post-buckling behaviour of composite panels in the presence of unstable delaminations. Compos. Struct. 51(3), 301–309 (2001)

    Article  Google Scholar 

  23. Riccio, A., Perugini, P., Scaramuzzino, F.: Embedded delamination growth in composite panels under compressive load. Compos. B Eng. 32(3), 209–218 (2001)

    Article  Google Scholar 

  24. Riccio, A., Scaramuzzino, F., Perugini, P.: Influence of contact phenomena on embedded delamination growth in composites. AIAA J. 41(5), 933–940 (2003)

    Article  Google Scholar 

  25. Davies, G.A.O., Hitchings, D., Ankersen, J.: Predicting delamination and debonding in modern aerospace composite structures. Compos. Sci. Technol. 66, 846–854 (2006)

    Article  Google Scholar 

  26. De Borst, R., Remmers, J.J.C.: Comput. Model. Delamination. Compos Sci. Technol. 66, 713–722 (2006)

    Article  Google Scholar 

  27. Allix, O., Blanchard, L.: Mesomodelling of delamination: towards industrial applications. Compos. Sci. Technol. 66, 731–744 (2006)

    Article  Google Scholar 

  28. Backlund, J., Aronsson, C.: Tensile fracture of laminates with holes. J. Compos. Mater. 20, 259–286 (1986)

    Article  Google Scholar 

  29. Ireman, T., Ranvik, T., Eriksson, I.: On damage development in mechanically fastened composite laminates. Compos. Struct. 49, 151–171 (2000)

    Article  Google Scholar 

  30. Ochoa, O.O., Reddy, J.N.: Finite Element Analysis of Composite Laminates. Kluwer Academic Publishers, Dordrecht (1992)

    Book  Google Scholar 

  31. Sleight, D.W., Knight, N.F., Wang, J.T.: Evaluation of a progressive failure analysis methodology for laminated composite structures. AIAA paper, pp. 97–1187 (1997)

    Google Scholar 

  32. Hashin, Z., Rotem, A.: A fatigue failure criterion for fiber reinforced materials. J. Compos. Mater. 7, 448–474 (1973)

    Article  Google Scholar 

  33. Hashin, Z.: Failure criteria for unidirectional fiber composites. J. Appl. Mech. 47, 329–334 (1980)

    Article  Google Scholar 

  34. Murray, Y., Schwer, L.: Implementation and verification of fiber-composite damage models. failure criteria and analysis in dynamic response. ASME AMD 107, 21–30 (1990)

    Google Scholar 

  35. Petit, P.H., Waddoups, M.E.: A method of predicting the non-linear behaviour of laminated composites. J. Compos. Mater. 3, 2–19 (1969)

    Article  Google Scholar 

  36. Sandhu, R.S.: Non-linear behaviour of unidirectional and angle ply laminates. AIAA J. Aircraft 13, 104–111 (1974)

    Article  Google Scholar 

  37. Nahas, M.N.: Survey of failure and post-failure theories of laminated fiber-reinforced composites. J. Compos. Tech. Res. 8, 138–153 (1986)

    Article  Google Scholar 

  38. Hahn, H.T., Tsai, S.W.: On the behaviour of composite laminates after initial failures. Astronaut. Aeronaut. 21, 58–62 (1983)

    Google Scholar 

  39. Perugini, P., Riccio, A., Scaramuzzino, F.: Three-dimensional progressive damage analysis in composite joints. In: Proceedings of the Eighth International Conference on Civil and Structural Engineering Computing, Civil-Comp Press, Stirling, (2001)

    Google Scholar 

  40. Riccio, A.: Effects of geometrical and material features on damage onset and propagation in single-lap bolted composite joints under tensile load: Part II—numerical studies. Int. J. Compos. Mater. 39(23), 2091–2112 (2005)

    Article  Google Scholar 

  41. Sun, H.T., Chang, F.K., Qing, X.: The response of composite joints with bolt-clamping loads. Part I: model development. J. Compos. Mater. 36(1), 47–67 (2002)

    Article  Google Scholar 

  42. Baker, A.A., Dutton, S., Kelly, D.: Composite Materials for Aircraft Structures, 2nd edn. (AIAA Educational Series, 2004)

    Google Scholar 

  43. Crisfield, M.A.: Non-Linear Finite Element Analysis of Solids and Structures. Wiley, New York (1996)

    Google Scholar 

  44. Sun, C.T.: Strength Analysis of unidirectional composites and laminates. Compr. Compos. Mater. 1, 641–666 (2008)

    Google Scholar 

  45. Reeder, J.R., Crews, J.H.: Mixed-mode bending method for delamination testing. AIAA J. 28(7), 1270–1276 (1990)

    Article  Google Scholar 

  46. Wang, J.T., Raju, I.S.: Strain energy release rate formulae for skin-stiffener debond modeled with plate elements. Eng. Fract. Mech. 54, 211–228 (1996)

    Article  Google Scholar 

  47. Glaessgen, E.H., Riddel, W.T., Raju, I.S.: Nodal constraint, shear deformation and continuity effects related to the modeling of debonding of laminates, using plate elements. CMES 3, 103–116 (2002)

    MATH  Google Scholar 

  48. Glaessgen, E.H., Riddel, W.T. Raju, I.S.: Effect of shear deformation and continuity on delamination modeling with plate elements, in the 39rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials. Conference, Long Beach, CA, USA, (1998)

    Google Scholar 

  49. Krueger, R., O’Brien, T.K.: A shell/3D modeling technique for the analysis of delaminated composite laminates. Compos. A Appl. Sci. Manuf. 32, 25–44 (2001)

    Article  Google Scholar 

  50. Shivakumar, K.N., Tan, P.W., Newman, J.C.: A Virtual crack closure technique for calculating stress intensity factors for cracked three dimensional bodies. Int. J. Fracture. 36, R43–R50 (1988)

    Google Scholar 

  51. Krueger, R.: The virtual crack closure technique: history, Approach and Applications. NASA/CR-2002-211628 (2002)

    Google Scholar 

  52. Riccio, A.: Sviluppo di procedure numeriche non lineari agli elementi finite orientate allo studio di strutture in materiale composito danneggiate. Tesi di Dottorato, Seconda Università degli Studi di Napoli, Tutor. Prof. F. Scaramuzzino, A.A. (1998–99)

    Google Scholar 

  53. Hwu, C., Hu, J.: Stress intensity factors and energy release rates for of delaminations in composite laminates. Eng. Fract. Mech. 42, 988–997 (1992)

    Google Scholar 

  54. Liu, S., Chang, F.K.: Matrix cracking effect on delamination growth in composite laminates induced by a spherical indenter. J. Compos. Mater. 28, 940–977 (1994)

    Article  Google Scholar 

  55. Mukherjee, Y.X., Gulrajani, S.N., Mukherjee, S., Netravali, A.N.: A numerical and experimental study of delaminated layered composites. J. Compos. Mater. 28, 837–870 (1994)

    Article  Google Scholar 

  56. Riks, E.: Progress in collapse analysis. Presented at the 1984 ASME Pressure Vessel and Piping Conference (Session on Collapse Analysis of Structures-I), San Antonio (1984)

    Google Scholar 

  57. Sleight, D.W.: Progressive failure analysis methodology for laminated composite structures. NASA/TP-1999-209107

    Google Scholar 

  58. Chang, F.K., Chang, K.Y.: A progressive damage model for laminated composites containing stress concentrations. J. Compos. Mater. 21 (1987)

    Google Scholar 

  59. Tan, S.C.: A Progressive Failure Model for composite laminates containing openings. J. Compos. Mater. 25, 556 (1991)

    Google Scholar 

  60. Riccio, A., Gigliotti, M.: A Novel numerical delamination growth approach for the preliminary design of damage tolerant composite structures. J. Compos. Mater. 41(16), 1939–1960 (2007)

    Article  Google Scholar 

  61. Pietropaoli, E., Riccio, A.: On the robustness of finite element procedures based on virtual crack closure technique and fail release approach for delamination growth phenomena. Definition and assessment of a novel methodology. Compos. Sci. Technol. 70(8), 1288–1300 (2010)

    Article  Google Scholar 

  62. Pietropaoli, E., Riccio, A.: Formulation and assessment of an enhanced finite element procedure for the analysis of delamination growth phenomena in composite structures. Compos. Sci. Technol. 71(6), 836–846 (2011)

    Article  Google Scholar 

  63. Riccio, A., Raimondo, A., Scaramuzzino, F.: A study on skin delaminations growth in stiffened composite panels by a novel numerical approach. Appl. Compos. Mater. 20(4), 465–488 (2013)

    Article  Google Scholar 

  64. Riccio, A., Raimondo, A., Di Caprio F., Scaramuzzino, F.: Delaminations buckling and growth phenomena in stiffened composite panels under compression. Part II: a numerical study. J. Compos. Mater. (2013), doi: 10.1177/0021998313502742

  65. Riccio, A., Raimondo, A, Fragale, S., Camerlingo, F., Gambino, B., Toscano, C., Tescione, D.: Delaminations buckling and growth phenomena in stiffened composite panels under compression. Part I: an Experimental Study. J. Compos. Mater. doi: 10.1177/0021998313502741. (2013)

  66. ABAQUS MANUAL (revision 6.5-1): theory

    Google Scholar 

  67. Riccio, A., Pietropaoli, E.: Modeling damage propagation in composite plates with embedded delamination under compressive load. J. Compos. Mater. 42(13), 1309–1335 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniello Riccio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Riccio, A., Pietropaoli, E., Raimondo, A. (2015). Detailed Methodologies for Integrated Delamination Growth and Fiber-Matrix Damage Progression Simulation. In: Riccio, A. (eds) Damage Growth in Aerospace Composites. Springer Aerospace Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-04004-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-04004-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-04003-5

  • Online ISBN: 978-3-319-04004-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics