Advertisement

3D Scene Reconstruction Using Kinect

  • Marco Morana
Chapter
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 260)

Abstract

The issue of the automatic reconstruction of 3D scenes has been addressed in several chapters over the last few years. Many of them describe techniques for processing stereo vision or range images captured by high quality range sensors. However, due to the high price of such input devices, most of the methods proposed in the literature are not suitable for real-world scenarios. This chapter proposes a method designed to reconstruct 3D scenes perceived by means of a cheap device, namely the Kinect sensor. The scene is efficiently represented as a composition of superquadric shapes so as to obtain a compact description of environment, however complex it may be. The approach proposed here is intended to be used as a novel processing module of a well-established cognitive architecture for artificial vision. Experimental tests have been performed on real images and the results look very promising.

Notes

Acknowledgments

This work has been partially supported by the PO FESR 2007/2013 grant G73F11000130004 funding the SmartBuildings project.

References

  1. 1.
    Afanasyev, I., Biasi, N., Baglivo, L., Cecco, M.D.: 3D object localization using superquadric models with a kinect sensor. Technical report: Mechatronics Department, University of Trento, Italy (2011). http://www.ing.unitn.it/afanasye
  2. 2.
    Barr, A.: Superquadrics and angle-preserving transformations. Comput. Graph. Appl. IEEE 1(1), 11–23 (1981). doi: 10.1109/MCG.1981.1673799 CrossRefGoogle Scholar
  3. 3.
    Borenstein, G.: Making Things See: 3D Vision with Kinect, Processing, Arduino, and MakerBot. Make: Books. O’Reilly Media Inc., Sebastopol (2012)Google Scholar
  4. 4.
    Chella, A., Frixione, M., Gaglio, S.: A cognitive architecture for artificial vision. Artif. Intell. 89(1–2), 73–111 (1997). doi: 10.1016/S0004-3702(96),00039-2 CrossRefMATHGoogle Scholar
  5. 5.
    Chella, A., Frixione, M., Gaglio, S.: Understanding dynamic scenes. Artif. Intell. 123(1–2), 89–132 (2000). doi: 10.1016/S0004-3702(00),00048-5 CrossRefMATHGoogle Scholar
  6. 6.
    Cottone, P., Lo Re, G., Maida, G., Morana, M.: Motion sensors for activity recognition in an ambient-intelligence scenario. In: IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), pp. 646–651 (2013). doi: 10.1109/PerComW.2013.6529573
  7. 7.
    De Paola, A., Gaglio, S., Lo Re, G., Ortolani, M.: Sensor9k : a testbed for designing and experimenting with wsn-based ambient intelligence applications. Pervasive Mob. Comput. 8(3), 448–466 (2012). http://dx.doi.org/10.1016/j.pmcj.2011.02.006
  8. 8.
    De Paola, A., Lo Re, G., Morana, M., Ortolani, M.: An intelligent system for energy efficiency in a complex of buildings. In: Sustainable Internet and ICT for Sustainability (SustainIT), pp. 1–5 (2012)Google Scholar
  9. 9.
    Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981). doi: 10.1145/358669.358692. http://doi.acm.org/10.1145/358669.358692
  10. 10.
    Grimson, W.E.L.: Object Recognition by Computer: The Role of Geometric Constraints. MIT Press, Cambridge (1990)Google Scholar
  11. 11.
    Kean, S., Hall, J., Perry, P.: Meet the kinect: An Introduction to Programming Natural User Interfaces, 1st edn. Apress, CA (2011)CrossRefGoogle Scholar
  12. 12.
    Krivic, J., Solina, F.: Part-level object recognition using superquadrics. Comput. Vision Image Underst. 95(1), 105–126 (2004). doi: 10.1016/j.cviu.2003.11.002 CrossRefGoogle Scholar
  13. 13.
    Leonardis, A., Jaklic, A., Solina, F.: Superquadrics for segmenting and modeling range data. IEEE Trans. Pattern Anal. Mach. Intell. 19(11), 1289–1295 (1997). doi: 10.1109/34.632988 Google Scholar
  14. 14.
    Lo Re, G., Morana, M., Ortolani, M.: Improving user experience via motion sensors in an ambient intelligence scenario. In: Pervasive and Embedded Computing and Communication Systems (PECCS), pp. 29–34 (2013)Google Scholar
  15. 15.
    Marshall, D., Lukacs, G., Martin, R.: Robust segmentation of primitives from range data in the presence of geometric degeneracy. IEEE Trans. Pattern Anal. Mach. Intell. 23(3), 304–314 (2001). doi: 10.1109/34.910883. http://dx.doi.org/10.1109/34.910883 Google Scholar
  16. 16.
    PrimeSense: Openni. http://www.openni.org/
  17. 17.
    Solina, F., Bajcsy, R.: Recovery of parametric models from range images: the case for superquadrics with global deformations. IEEE Trans. Pattern Anal. Mach. Intell. 12(2), 131–147 (1990). doi: 10.1109/34.44401 Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.University of PalermoPalermoItaly

Personalised recommendations