Advertisement

Intervertebral Disc Tissues

  • Michael A. Adams
Chapter
Part of the Engineering Materials and Processes book series (EMP)

Abstract

Cartilagenous intervertebral discs separate adjacent vertebrae in the spine , allowing modest spinal movements, and distributing compressive load evenly on the vertebral bodies. A central fluid-like nucleus pulposus region is surrounded by a tough laminated annulus fibrosus. Because adult discs lack a blood or nerve supply, cell density is very low and tissue turnover is very slow. Consequently, discs have only a limited ability to heal following injury, and they exhibit a marked and progressive age-related deterioration in material properties. Changes in composition of old discs include fragmentation and loss of proteoglycans , loss of water (especially from the nucleus), and increasing cross-linking of collagens . Functionally, old disc tissues become dry, fibrous, and stiff. Pressure in the nucleus decreases, and stress concentrations grow in the annulus, which becomes more vulnerable to injury and herniation (“slipped disc”). Physical disruption allows nerves and blood vessels to grow into the tissue, which can become a source of chronic back pain . The aging annulus weakens, despite increased collagen cross-linking, because small defects accumulate in its lamellar structure, causing microscopic delamination. Progressive collapse of the annulus can trigger a “degenerative cascade” of events, including spinal osteoarthritis (as load-bearing is transferred to the neural arch), segmental instability, osteophytosis, and senile kyphosis.

Keywords

Intervertebral Disc Nucleus Pulposus Disc Degeneration Annulus Fibrosus Neural Arch 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Acaroglu ER, Iatridis JC, Setton LA, Foster RJ, Mow VC, Weidenbaum M (1995) Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine 20:2690–2701CrossRefGoogle Scholar
  2. 2.
    Adams M, Bogduk N, Burton K, Dolan P (2013) The biomechanics of back pain, 3rd edn. Churchill Livingstone, EdinburghGoogle Scholar
  3. 3.
    Adams MA (1995) Mechanical testing of the spine. An appraisal of methodology, results, and conclusions. Spine 20:2151–2156CrossRefGoogle Scholar
  4. 4.
    Adams MA, Dolan P (1991) A technique for quantifying the bending moment acting on the lumbar spine in vivo. J Biomech 24:117–126CrossRefGoogle Scholar
  5. 5.
    Adams MA, Dolan P (1996) Time-dependent changes in the lumbar spine’s resistance to bending. Clin Biomech 11:194–200CrossRefGoogle Scholar
  6. 6.
    Adams MA, Dolan P (2012) Intervertebral disc degeneration: evidence for two distinct phenotypes. J Anat 221:497–506CrossRefGoogle Scholar
  7. 7.
    Adams MA, Dolan P, Hutton WC (1987) Diurnal variations in the stresses on the lumbar spine. Spine 12:130–137CrossRefGoogle Scholar
  8. 8.
    Adams MA, Dolan P, Hutton WC (1988) The lumbar spine in backward bending. Spine 13:1019–1026CrossRefGoogle Scholar
  9. 9.
    Adams MA, Dolan P, McNally DS (2009) The internal mechanical functioning of intervertebral discs and articular cartilage, and its relevance to matrix biology. Matrix Biol 28:384–389CrossRefGoogle Scholar
  10. 10.
    Adams MA, Freeman BJ, Morrison HP, Nelson IW, Dolan P (2000) Mechanical initiation of intervertebral disc degeneration. Spine 25:1625–1636CrossRefGoogle Scholar
  11. 11.
    Adams MA, Green TP (1993) Tensile properties of the annulus fibrosus. I. The contribution of fibre-matrix interactions to tensile stiffness and strength. Eur Spine J 2:203–208CrossRefGoogle Scholar
  12. 12.
    Adams MA, Green TP, Dolan P (1994) The strength in anterior bending of lumbar intervertebral discs. Spine 19:2197–2203CrossRefGoogle Scholar
  13. 13.
    Adams MA, Hutton WC (1981) The relevance of torsion to the mechanical derangement of the lumbar spine. Spine 6:241–248CrossRefGoogle Scholar
  14. 14.
    Adams MA, Hutton WC (1982) Prolapsed intervertebral disc. A hyperflexion injury 1981 Volvo award in basic science. Spine 7:184–191CrossRefGoogle Scholar
  15. 15.
    Adams MA, Hutton WC (1983) The effect of posture on the fluid content of lumbar intervertebral discs. Spine 8:665–671CrossRefGoogle Scholar
  16. 16.
    Adams MA, Hutton WC (1985) Gradual disc prolapse. Spine 10:524–531CrossRefGoogle Scholar
  17. 17.
    Adams MA, Hutton WC (1986) The effect of posture on diffusion into lumbar intervertebral discs. J Anat 147:121–134Google Scholar
  18. 18.
    Adams MA, Hutton WC, Stott JR (1980) The resistance to flexion of the lumbar intervertebral joint. Spine 5:245–253CrossRefGoogle Scholar
  19. 19.
    Adams MA, May S, Freeman BJ, Morrison HP, Dolan P (2000b) Effects of backward bending on lumbar intervertebral discs. Relevance to physical therapy treatments for low back pain. Spine 25:431–437 (discussion 438)Google Scholar
  20. 20.
    Adams MA, McMillan DW, Green TP, Dolan P (1996) Sustained loading generates stress concentrations in lumbar intervertebral discs. Spine 21:434–438CrossRefGoogle Scholar
  21. 21.
    Adams MA, McNally DS, Dolan P (1996) ‘Stress’ distributions inside intervertebral discs. The effects of age and degeneration. J Bone Joint Surg Br 78:965–972CrossRefGoogle Scholar
  22. 22.
    Adams MA, Pollintine P, Tobias JH, Wakley GK, Dolan P (2006) Intervertebral disc degeneration can predispose to anterior vertebral fractures in the thoracolumbar spine. J Bone Miner Res 21:1409–1416CrossRefGoogle Scholar
  23. 23.
    Adams MA, Roughley PJ (2006) What is intervertebral disc degeneration, and what causes it? Spine 31:2151–2161CrossRefGoogle Scholar
  24. 24.
    Adams MA, Stefanakis M, Dolan P (2010) Healing of a painful intervertebral disc should not be confused with reversing disc degeneration: implications for physical therapies for discogenic back pain. Clin Biomech (Bristol, Avon) 25:961–971Google Scholar
  25. 25.
    Al-Rawahi M, Luo J, Pollintine P, Dolan P, Adams MA (2011) Mechanical function of vertebral body osteophytes, as revealed by experiments on cadaveric spines. Spine (Phila Pa 1976) 36:770–777Google Scholar
  26. 26.
    Albert HB, Lambert P, Rollason J, Sorensen JS, Worthington T, Pedersen MB, Norgaard HS, Vernallis A, Busch F, Manniche C, Elliott T (2013) Does nuclear tissue infected with bacteria following disc herniations lead to Modic changes in the adjacent vertebrae? Eur Spine J 22:690–696CrossRefGoogle Scholar
  27. 27.
    Albert HB, Sorensen JS, Christensen BS, Manniche C (2013) Antibiotic treatment in patients with chronic low back pain and vertebral bone edema (Modic type 1 changes): a double-blind randomized clinical controlled trial of efficacy. Eur Spine J 22:697–707CrossRefGoogle Scholar
  28. 28.
    Antoniou J, Steffen T, Nelson F, Winterbottom N, Hollander AP, Poole RA, Aebi M, Alini M (1996) The human lumbar intervertebral disc: evidence for changes in the biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and degeneration. J Clin Invest 98:996–1003CrossRefGoogle Scholar
  29. 29.
    Bank RA, Soudry M, Maroudas A, Mizrahi J, TeKoppele JM (2000) The increased swelling and instantaneous deformation of osteoarthritic cartilage is highly correlated with collagen degradation (In Process Citation). Arthritis Rheum 43:2202–2210CrossRefGoogle Scholar
  30. 30.
    Battie MC, Videman T, Levalahti E, Gill K, Kaprio J (2008) Genetic and environmental effects on disc degeneration by phenotype and spinal level: a multivariate twin study. Spine 33:2801–2808CrossRefGoogle Scholar
  31. 31.
    Bell KM, Hartman RA, Gilbertson LG, Kang JD (2013) In vitro spine testing using a robot-based testing system: comparison of displacement control and “hybrid control”. J Biomech 46:1663–1669CrossRefGoogle Scholar
  32. 32.
    Botsford DJ, Esses SI, Ogilvie-Harris DJ (1994) In vivo diurnal variation in intervertebral disc volume and morphology. Spine 19:935–940CrossRefGoogle Scholar
  33. 33.
    Brinckmann P, Biggemann M, Hilweg D (1989) Prediction of the compressive strength of human lumbar vertebrae. Spine 14:606–610CrossRefGoogle Scholar
  34. 34.
    Brinckmann P, Frobin W, Hierholzer E, Horst M (1983) Deformation of the vertebral end-plate under axial loading of the spine. Spine 8:851–856CrossRefGoogle Scholar
  35. 35.
    Brinckmann P, Horst M (1985) The influence of vertebral body fracture, intradiscal injection, and partial discectomy on the radial bulge and height of human lumbar discs. Spine 10:138–145CrossRefGoogle Scholar
  36. 36.
    Butler D, Trafimow JH, Andersson GB, McNeill TW, Huckman MS (1990) Discs degenerate before facets. Spine 15:111–113CrossRefGoogle Scholar
  37. 37.
    Cheung KM, Karppinen J, Chan D, Ho DW, Song YQ, Sham P, Cheah KS, Leong JC, Luk KD (2009) Prevalence and pattern of lumbar magnetic resonance imaging changes in a population study of one thousand forty-three individuals. Spine 34:934–940CrossRefGoogle Scholar
  38. 38.
    Chu JY, Skrzypiec D, Pollintine P, Adams MA (2008) Can compressive stress be measured experimentally within the annulus fibrosus of degenerated intervertebral discs? Proc Inst Mech Eng [H] 222:161–170CrossRefGoogle Scholar
  39. 39.
    Cyron BM, Hutton WC (1981) The behaviour of the lumbar intervertebral disc under repetitive forces. Int Orthop 5:203–207CrossRefGoogle Scholar
  40. 40.
    DeGroot J, Verzijl N, Wenting-Van Wijk MJ, Jacobs KM, Van El B, Van Roermund PM, Bank RA, Bijlsma JW, TeKoppele JM, Lafeber FP (2004) Accumulation of advanced glycation end products as a molecular mechanism for aging as a risk factor in osteoarthritis. Arthritis Rheum 50:1207–1215CrossRefGoogle Scholar
  41. 41.
    Dolan P, Adams MA (1993) The relationship between EMG activity and extensor moment generation in the erector spinae muscles during bending and lifting activities. J Biomech 26:513–522CrossRefGoogle Scholar
  42. 42.
    Dolan P, Adams MA, Hutton WC (1987) The short-term effects of chymopapain on intervertebral discs. J Bone Joint Surg 69:422–428Google Scholar
  43. 43.
    Dolan P, Earley M, Adams MA (1994) Bending and compressive stresses acting on the lumbar spine during lifting activities. J Biomech 27:1237–1248CrossRefGoogle Scholar
  44. 44.
    Dolan P, Luo J, Pollintine P, Landham PR, Stefanakis M, Adams MA (2013) Intervertebral disc decompression following endplate damage: implications for disc degeneration depend on spinal level and age. Spine (Phila Pa 1976) 38:1466–1474Google Scholar
  45. 45.
    Ebara S, Iatridis JC, Setton LA, Foster RJ, Mow VC, Weidenbaum M (1996) Tensile properties of nondegenerate human lumbar anulus fibrosus. Spine 21:452–461CrossRefGoogle Scholar
  46. 46.
    Fujita Y, Duncan NA, Lotz JC (1997) Radial tensile properties of the lumbar annulus fibrosus are site and degeneration dependent. J Orthop Res 15:814–819CrossRefGoogle Scholar
  47. 47.
    Fujiwara A, Lim TH, An HS, Tanaka N, Jeon CH, Andersson GB, Haughton VM (2000) The effect of disc degeneration and facet joint osteoarthritis on the segmental flexibility of the lumbar spine. Spine 25:3036–3044CrossRefGoogle Scholar
  48. 48.
    Galante JO (1967) Tensile properties of the human lumbar annulus fibrosus. Acta Orthop Scand Suppl:1–91Google Scholar
  49. 49.
    Green TP, Adams MA, Dolan P (1993) Tensile properties of the annulus fibrosus II. Ultimate tensile strength and fatigue life. Eur Spine J 2:209–214CrossRefGoogle Scholar
  50. 50.
    Gregory DE, Callaghan JP (2011) A comparison of uniaxial and biaxial mechanical properties of the annulus fibrosus: a porcine model. J Biomech Eng 133:024503CrossRefGoogle Scholar
  51. 51.
    Haefeli M, Kalberer F, Saegesser D, Nerlich AG, Boos N, Paesold G (2006) The course of macroscopic degeneration in the human lumbar intervertebral disc. Spine 31:1522–1531CrossRefGoogle Scholar
  52. 52.
    Hastreiter D, Ozuna RM, Spector M (2001) Regional variations in certain cellular characteristics in human lumbar intervertebral discs, including the presence of alpha-smooth muscle actin. J Orthop Res 19:597–604CrossRefGoogle Scholar
  53. 53.
    Hutton WC, Adams MA (1982) Can the lumbar spine be crushed in heavy lifting? Spine 7:586–590CrossRefGoogle Scholar
  54. 54.
    Jacobs NT, Cortes DH, Vresilovic EJ, Elliott DM (2013) Biaxial tension of fibrous tissue: using finite element methods to address experimental challenges arising from boundary conditions and anisotropy. J Biomech Eng 135:021004CrossRefGoogle Scholar
  55. 55.
    Janevic J, Ashton-Miller JA, Schultz AB (1991) Large compressive preloads decrease lumbar motion segment flexibility. J Orthop Res 9:228–236CrossRefGoogle Scholar
  56. 56.
    Johnson WE, Caterson B, Eisenstein SM, Roberts S (2005) Human intervertebral disc aggrecan inhibits endothelial cell adhesion and cell migration in vitro. Spine 30:1139–1147CrossRefGoogle Scholar
  57. 57.
    Klein JA, Hukins DW (1982) Collagen fibre orientation in the annulus fibrosus of intervertebral disc during bending and torsion measured by X-ray diffraction. Biochim Biophys Acta 719:98–101CrossRefGoogle Scholar
  58. 58.
    Lama P, Zehra U, Balkovec C, Claireaux H, Flower L, Harding IJ, Dolan P, Adams MA (2014) Significance of cartilage endplate within herniated disc tissue. Eur Spine J (published on-line ahead of print)Google Scholar
  59. 59.
    Le Maitre CL, Freemont AJ, Hoyland JA (2007) Accelerated cellular senescence in degenerate intervertebral discs: a possible role in the pathogenesis of intervertebral disc degeneration. Arthritis Res Ther 9:R45CrossRefGoogle Scholar
  60. 60.
    Liebscher T, Haefeli M, Wuertz K, Nerlich AG, Boos N (2011) Age-related variation in cell density of human lumbar intervertebral disc. Spine 36:153–159CrossRefGoogle Scholar
  61. 61.
    Luo J, Daines L, Charalambous A, Adams MA, Annesley-Williams DJ, Dolan P (2009) Vertebroplasty: only small cement volumes are required to normalize stress distributions on the vertebral bodies. Spine (Phila Pa 1976) 34:2865–2873Google Scholar
  62. 62.
    Luo J, Skrzypiec DM, Pollintine P, Adams MA, Annesley-Williams DJ, Dolan P (2007) Mechanical efficacy of vertebroplasty: influence of cement type, BMD, fracture severity, and disc degeneration. Bone 40:1110–1119CrossRefGoogle Scholar
  63. 63.
    Marchand F, Ahmed AM (1990) Investigation of the laminate structure of lumbar disc anulus fibrosus. Spine 15:402–410CrossRefGoogle Scholar
  64. 64.
    Markolf KL, Morris JM (1974) The structural components of the intervertebral disc. A study of their contributions to the ability of the disc to withstand compressive forces. J Bone Joint Surg Am 56:675–687Google Scholar
  65. 65.
    Maroudas AI (1976) Balance between swelling pressure and collagen tension in normal and degenerate cartilage. Nature 260:808–809CrossRefGoogle Scholar
  66. 66.
    Mayer JE, Iatridis JC, Chan D, Qureshi SA, Gottesman O, Hecht AC (2013) Genetic polymorphisms associated with intervertebral disc degeneration. Spine J 13:299–317CrossRefGoogle Scholar
  67. 67.
    McMillan DW, Garbutt G, Adams MA (1996) Effect of sustained loading on the water content of intervertebral discs: implications for disc metabolism. Ann Rheum Dis 55:880–887CrossRefGoogle Scholar
  68. 68.
    McMillan DW, McNally DS, Garbutt G, Adams MA (1996) Stress distributions inside intervertebral discs: the validity of experimental “stress profilometry’. Proc Inst Mech Eng [H] 210:81–87CrossRefGoogle Scholar
  69. 69.
    Michalek AJ, Gardner-Morse MG, Iatridis JC (2012) Large residual strains are present in the intervertebral disc annulus fibrosus in the unloaded state. J Biomech 45:1227–1231CrossRefGoogle Scholar
  70. 70.
    Nachemson AL (1960) Lumbar intradiscal pressure. Acta Orthop Scand Suppl 43Google Scholar
  71. 71.
    Nachemson AL (1981) Disc pressure measurements. Spine 6:93–97CrossRefGoogle Scholar
  72. 72.
    O’Connell GD, Guerin HL, Elliott DM (2009) Theoretical and uniaxial experimental evaluation of human annulus fibrosus degeneration. J Biomech Eng 131:111007CrossRefGoogle Scholar
  73. 73.
    O’Connell GD, Jacobs NT, Sen S, Vresilovic EJ, Elliott DM (2011) Axial creep loading and unloaded recovery of the human intervertebral disc and the effect of degeneration. J Mech Behav Biomed Mater 4:933–942CrossRefGoogle Scholar
  74. 74.
    O’Connell GD, Johannessen W, Vresilovic EJ, Elliott DM (2007) Human internal disc strains in axial compression measured noninvasively using magnetic resonance imaging. Spine 32:2860–2868CrossRefGoogle Scholar
  75. 75.
    O’Connell GD, Sen S, Elliott DM (2012) Human annulus fibrosus material properties from biaxial testing and constitutive modeling are altered with degeneration. Biomech Model Mechanobiol 11:493–503CrossRefGoogle Scholar
  76. 76.
    Olmarker K, Nutu M, Storkson R (2003) Changes in spontaneous behavior in rats exposed to experimental disc herniation are blocked by selective TNF-alpha inhibition. Spine 28:1635–1641 (discussion 1642)Google Scholar
  77. 77.
    Patwardhan AG, Havey RM, Carandang G, Simonds J, Voronov LI, Ghanayem AJ, Meade KP, Gavin TM, Paxinos O (2003) Effect of compressive follower preload on the flexion-extension response of the human lumbar spine. J Orthop Res 21:540–546CrossRefGoogle Scholar
  78. 78.
    Peng B, Hou S, Wu W, Zhang C, Yang Y (2006) The pathogenesis and clinical significance of a high-intensity zone (HIZ) of lumbar intervertebral disc on MR imaging in the patient with discogenic low back pain. Eur Spine J 15:583–587CrossRefGoogle Scholar
  79. 79.
    Peng B, Pang X, Wu Y, Zhao C, Song X (2010) A randomized placebo-controlled trial of intradiscal methylene blue injection for the treatment of chronic discogenic low back pain. Pain 149:124–129CrossRefGoogle Scholar
  80. 80.
    Pezowicz CA, Robertson PA, Broom ND (2005) Intralamellar relationships within the collagenous architecture of the annulus fibrosus imaged in its fully hydrated state. J Anat 207:299–312CrossRefGoogle Scholar
  81. 81.
    Pluijm SM, van Essen HW, Bravenboer N, Uitterlinden AG, Smit JH, Pols HA, Lips P (2004) Collagen type I alpha1 Sp1 polymorphism, osteoporosis, and intervertebral disc degeneration in older men and women. Ann Rheum Dis 63:71–77CrossRefGoogle Scholar
  82. 82.
    Pollintine P, Luo J, Offa-Jones B, Dolan P, Adams MA (2009) Bone creep can cause progressive vertebral deformity. Bone 45:466–472CrossRefGoogle Scholar
  83. 83.
    Pollintine P, Przybyla AS, Dolan P, Adams MA (2004) Neural arch load-bearing in old and degenerated spines. J Biomech 37:197–204CrossRefGoogle Scholar
  84. 84.
    Pollintine P, van Tunen MS, Luo J, Brown MD, Dolan P, Adams MA (2010) Time-dependent compressive deformation of the ageing spine: relevance to spinal stenosis. Spine (Phila Pa 1976) 35:386–394Google Scholar
  85. 85.
    Potvin JR, Norman RW, McGill SM (1991) Reduction in anterior shear forces on the L4/L5 disc by the lumbar musculature. Clin Biomech 6:88–96CrossRefGoogle Scholar
  86. 86.
    Rajasekaran S, Bajaj N, Tubaki V, Kanna RM, Shetty AP (2013) ISSLS prize winner: the anatomy of failure in lumbar disc herniation: an in vivo, multimodal, prospective study of 181 subjects. Spine (Phila Pa 1976) 38:1491–1500Google Scholar
  87. 87.
    Rodriguez AG, Slichter CK, Acosta FL, Rodriguez-Soto AE, Burghardt AJ, Majumdar S, Lotz JC (2011) Human disc nucleus properties and vertebral endplate permeability. Spine (Phila Pa 1976) 36:512–520Google Scholar
  88. 88.
    Sato K, Kikuchi S, Yonezawa T (1999) In vivo intradiscal pressure measurement in healthy individuals and in patients with ongoing back problems. Spine 24:2468–2474CrossRefGoogle Scholar
  89. 89.
    Schek RM, Michalek AJ, Iatridis JC (2011) Genipin-crosslinked fibrin hydrogels as a potential adhesive to augment intervertebral disc annulus repair. Eur Cell Mater 21:373–383Google Scholar
  90. 90.
    Schollmeier G, Lahr-Eigen R, Lewandrowski K-U (2000) Observations on fiber-forming collagens in the anulus fibrosus. Spine 25:2736–2741CrossRefGoogle Scholar
  91. 91.
    Schollum ML, Robertson PA, Broom ND (2009) A microstructural investigation of intervertebral disc lamellar connectivity: detailed analysis of the translamellar bridges. J Anat 214:805–816CrossRefGoogle Scholar
  92. 92.
    Screen HR, Lee DA, Bader DL, Shelton JC (2004) An investigation into the effects of the hierarchical structure of tendon fascicles on micromechanical properties. Proc Inst Mech Eng [H] 218:109–119CrossRefGoogle Scholar
  93. 93.
    Seidler A, Bolm-Audorff U, Siol T, Henkel N, Fuchs C, Schug H, Leheta F, Marquardt G, Schmitt E, Ulrich PT, Beck W, Missalla A, Elsner G (2003) Occupational risk factors for symptomatic lumbar disc herniation; a case-control study. Occup Environ Med 60:821–830CrossRefGoogle Scholar
  94. 94.
    Shan Z, Fan S, Xie Q, Suyou L, Liu J, Wang C, Zhao F (2014) Spontaneous resorption of lumbar disc herniation is less likely when modic changes are present. Spine 39(9):736–744Google Scholar
  95. 95.
    Sivan SS, Tsitron E, Wachtel E, Roughley P, Sakkee N, van der Ham F, Degroot J, Maroudas A (2006) Age-related accumulation of pentosidine in aggrecan and collagen from normal and degenerate human intervertebral discs. Biochem J 399:29–35CrossRefGoogle Scholar
  96. 96.
    Sivan SS, Tsitron E, Wachtel E, Roughley PJ, Sakkee N, van der Ham F, DeGroot J, Roberts S, Maroudas A (2006) Aggrecan turnover in human intervertebral disc as determined by the racemization of aspartic acid. J Biol Chem 281:13009–13014CrossRefGoogle Scholar
  97. 97.
    Sivan SS, Wachtel E, Tsitron E, Sakkee N, van der Ham F, Degroot J, Roberts S, Maroudas A (2008) Collagen turnover in normal and degenerate human intervertebral discs as determined by the racemization of aspartic acid. J Biol Chem 283:8796–8801CrossRefGoogle Scholar
  98. 98.
    Skrzypiec D, Tarala M, Pollintine P, Dolan P, Adams MA (2007) When are intervertebral discs stronger than their adjacent vertebrae? Spine 32:2455–2461CrossRefGoogle Scholar
  99. 99.
    Skrzypiec DM, Bishop NE, Klein A, Püschel K, Morlock MM, Huber G (2013) Estimation of shear load sharing in moderately degenerated human lumbar spine. J Biomech 46:651–657CrossRefGoogle Scholar
  100. 100.
    Skrzypiec DM, Pollintine P, Przybyla A, Dolan P, Adams MA (2007) The internal mechanical properties of cervical intervertebral discs as revealed by stress profilometry. Eur Spine J 16:1701–1709CrossRefGoogle Scholar
  101. 101.
    Smeathers JE (1984) Some time dependent properties of the intervertebral joint when under compression. Eng Med 13:83–87CrossRefGoogle Scholar
  102. 102.
    Stefanakis M, Al-Abbasi M, Harding I, Pollintine P, Dolan P, Tarlton J, Adams MA (2012) Annulus fissures are mechanically and chemically conducive to the ingrowth of nerves and blood vessels. Spine (Phila Pa 1976) 37:1883–1891Google Scholar
  103. 103.
    Stefanakis M, Luo J, Pollintine P, Dolan P, Adams MA (2014) ISSLS prize winner: Mechanical influences in progressive intervertebral disc degeneration. Spine 39(17):1365–1372Google Scholar
  104. 104.
    Temple MM, Xue Y, Chen MQ, Sah RL (2006) Interleukin-1alpha induction of tensile weakening associated with collagen degradation in bovine articular cartilage. Arthritis Rheum 54:3267–3276CrossRefGoogle Scholar
  105. 105.
    Tsantrizos A, Ito K, Aebi M, Steffen T (2005) Internal strains in healthy and degenerated lumbar intervertebral discs. Spine 30:2129–2137CrossRefGoogle Scholar
  106. 106.
    van der Veen AJ, Mullender MG, Kingma I, Van JH, Smit TH (2008) Contribution of vertebral bodies, endplates, and intervertebral discs to the compression creep of spinal motion segments. J Biomech 41:1260–1268CrossRefGoogle Scholar
  107. 107.
    Videman T, Leppavuori J, Kaprio J, Battie MC, Gibbons LE, Peltonen L, Koskenvuo M (1998) Intragenic polymorphisms of the vitamin D receptor gene associated with intervertebral disc degeneration. Spine 23:2477–2485CrossRefGoogle Scholar
  108. 108.
    Wade KR, Robertson PA, Broom ND (2012) On how nucleus-endplate integration is achieved at the fibrillar level in the ovine lumbar disc. J Anat 221:39–46CrossRefGoogle Scholar
  109. 109.
    Wade KR, Robertson PA, Broom ND (2012b) On the extent and nature of nucleus-annulus integration. Spine (Phila Pa 1976) 37:1826–1833Google Scholar
  110. 110.
    Wagner DR, Reiser KM, Lotz JC (2006) Glycation increases human annulus fibrosus stiffness in both experimental measurements and theoretical predictions. J Biomech 39:1021–1029CrossRefGoogle Scholar
  111. 111.
    Wang HJ, Chen BB, Yu CW, Hsu CY, Shih TT (2007) Alteration of disc vacuum contents during prolonged supine positioning: evaluation with MR image. Spine 32:2610–2615CrossRefGoogle Scholar
  112. 112.
    Wang Y, Videman T, Battie MC (2012) Lumbar vertebral endplate lesions: prevalence, classification, and association with age. Spine (Phila Pa 1976) 37:1432–1439Google Scholar
  113. 113.
    Werner U (1999) Ejection associated injuries within the German Air Force from 1981–1997. Aviat Space Environ Med 70:1230–1234Google Scholar
  114. 114.
    Wilke HJ, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3:91–97CrossRefGoogle Scholar
  115. 115.
    Yu J, Tirlapur U, Fairbank J, Handford P, Roberts S, Winlove CP, Cui Z, Urban J (2007) Microfibrils, elastin fibres and collagen fibres in the human intervertebral disc and bovine tail disc. J Anat 210:460–471CrossRefGoogle Scholar
  116. 116.
    Zhao F, Pollintine P, Hole BD, Dolan P, Adams MA (2005) Discogenic origins of spinal instability. Spine 30:2621–2630CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Centre for Comparative and Clinical AnatomyUniversity of BristolBristolUK

Personalised recommendations