Advertisement

Analytic Programming—A New Tool for Synthesis of Controller for Discrete Chaotic Lozi Map

  • R. Senkerik
  • Z. Kominkova Oplatkova
  • M. Pluhacek
  • I. Zelinka
Chapter
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 307)

Abstract

In this chapter, it is presented a utilization of a novel tool for symbolic regression, which is analytic programming, for the purpose of the synthesis of a new feedback control law. This new synthesized chaotic controller secures the fully stabilization of selected discrete chaotic systems, which is the two-dimensional Lozi map. The paper consists of the descriptions of analytic programming as well as selected chaotic system, used heuristic and cost function design. For experimentation, Self-Organizing Migrating Algorithm (SOMA) and Differential evolution (DE) were used. Two selected experiments are detailed described.

Keywords

Analytic programming Symbolic regression Chaos control Evolutionary algorithms Lozi map 

Notes

Acknowledgements

This work was supported by European Regional Development Fund under the project CEBIA-Tech No. CZ.1.05/2.1.00/03.0089, the project IT4Innovations Centre of Excellence No. CZ.1.05/1.1.00/02.0070, Grant Agency of the Czech Republic: GACR 13-08195S, and by the Development of human resources in research and development of latest soft computing methods and their application in practice project: No. CZ.1.07/2.3.00/20.0072 funded by Operational Programme Education for Competitiveness, co-financed by ESF and state budget of the Czech Republic; and by Internal Grant Agency of Tomas Bata University under the project No. IGA/FAI/2014/010.

References

  1. 1.
    Liu B, Wang L, Jin YH, Huang DX, Tang F (2007) Control and synchronization of chaotic systems by differential evolution algorithm. Chaos, Solitons & Fractals, Volume 34, Issue 2, pp. 412–419, ISSN 0960-0779.Google Scholar
  2. 2.
    Zelinka I, Senkerik R, Navratil E (2009) Investigation on evolutionary optimization of chaos control. Chaos, Solitons & Fractals, Volume 40, Issue 1, pp. 111–129.Google Scholar
  3. 3.
    Senkerik R, Zelinka I, Davendra D, Oplatkova Z (2010) Utilization of SOMA and differential evolution for robust stabilization of chaotic Logistic equation. Computers & Mathematics with Applications, Volume 60, Issue 4, pp. 1026–1037.Google Scholar
  4. 4.
    Pyragas K (1995) Control of chaos via extended delay feedback. Physics Letters A, Volume 206, pp. 323–330.Google Scholar
  5. 5.
    Aydin I, Karakose M, Akin E (2010) Chaotic-based hybrid negative selection algorithm and its applications in fault and anomaly detection. Expert Systems with Applications, Vol. 37, No. 7, pp. 5285–5294.CrossRefGoogle Scholar
  6. 6.
    Davendra D, Zelinka I, Senkerik R (2010) Chaos driven evolutionary algorithms for the task of PID control. Computers & Mathematics with Applications, Vol. 60, No. 4, pp. 1088–1104, ISSN 0898–1221.Google Scholar
  7. 7.
    Pluhacek M, Senkerik R, Davendra D, Kominkova Oplatkova Z, Zelinka I (2013) On the behavior and performance of chaos driven PSO algorithm with inertia weight. Computers & Mathematics with Applications, Vol. 66, No. 2, pp. 122–134.CrossRefMathSciNetGoogle Scholar
  8. 8.
    Just W (1999) Principles of Time Delayed Feedback Control. In: Schuster H.G., Handbook of Chaos Control, Wiley-Vch.Google Scholar
  9. 9.
    Pyragas K (1992) Continuous control of chaos by self-controlling feedback. Physics Letters A, Vol. 170, pp. 421–428.Google Scholar
  10. 10.
    Senkerik R, Kominkova Oplatkova Z, Pluhacek M (2013) Analytic Programming—A Novel Tool for Synthesis of Controller for Chaotic Lozi Map, In: Proceedings of the SCSI 2013, Rhodes Island, GR, EUROPMENT, pp. 201–206, ISBN 978-1-61804-204-0.Google Scholar
  11. 11.
    Senkerik R (2013) Evolutionary Chaos Control—a Brief Survey, In Proceedings of Nostradamus 2012: International conference on prediction, modeling and analysis of complex systems, Springer Series: “Advances in Intelligent Systems and Computing”, Vol. 192, pp. 35–48, ISBN: 978-3-642-33226-5.Google Scholar
  12. 12.
    Senkerik R, Oplatkova Z, Zelinka I, Davendra D, Jasek R (2012) Application of Analytic Programming for Evolutionary Synthesis of Control Law—Introduction of Two Approaches, In: Springer Series “Studies in Computational Intelligence”—“Advances in Intelligent Modelling and Simulation: Simulation Tools and Applications”, (Aleksander Byrski, Zuzana Oplatkova, Marco Carvalho and Marek Kisiel Dorohinicki (Eds.)), pp. 253–268, 2012, ISBN: 978-3-642-28887-6.Google Scholar
  13. 13.
    Senkerik R, Oplatkova Z, Zelinka I, Davendra D, Jasek R (2013) Application of Evolutionary Techniques for Optimization of Chaos Control—Introduction of Three Approaches, In: Springer Series “Inteligent Systems”—“Handbook of Optimization”, (Ivan Zelinka, Vaclav Snasel, Ajith Abraham(Eds.)), pp. 801–820, ISBN 978-3-642-30503-0.Google Scholar
  14. 14.
    Senkerik R, Oplatkova Z, Zelinka I, Davendra D (2013) Synthesis of feedback controller for three selected chaotic systems by means of evolutionary techniques: Analytic programming. Mathematical and Computer Modelling, Vol. 57, No. 1–2, 2013, pp. 57–67, ISSN 0895-7177.Google Scholar
  15. 15.
    Kominkova Oplatkova Z, Senkerik R, Zelinka I, Pluhacek M (2013) Analytic programming in the task of evolutionary synthesis of a controller for high order oscillations stabilization of discrete chaotic systems. Computers & Mathematics with Applications, Vol. 66, No. 2, pp. 177–189.CrossRefMathSciNetGoogle Scholar
  16. 16.
    Oplatkova Z (2009) Metaevolution: Synthesis of Optimization Algorithms by means of Symbolic Regression and Evolutionary Algorithms. Lambert Academic Publishing Saarbrücken, ISBN: 978-3-8383-1808-0.Google Scholar
  17. 17.
    Zelinka I, Davendra D, Senkerik R, Jasek R, Oplatkova Z (2011) Analytical Programming—a Novel Approach for Evolutionary Synthesis of Symbolic Structures. In: Evolutionary Algorithms, Eisuke Kita (Ed.), InTech, 2011.Google Scholar
  18. 18.
    Zelinka I, Guanrong Ch, Celikovsky S (2008) Chaos Synthesis by Means of Evolutionary algorithms. International Journal of Bifurcation and Chaos, Vol. 18, No. 4, pp. 911–942.CrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    Zelinka I (2004) SOMA—Self Organizing Migrating Algorithm, In: New Optimization Techniques in Engineering, (B.V. Babu, G. Onwubolu (eds)), Springer-Verlag, pp. 167–217, ISBN 3-540-20167X.Google Scholar
  20. 20.
    Price K, Storn RM, Lampinen JA (2005) Differential Evolution: A Practical Approach to Global Optimization. Springer.Google Scholar
  21. 21.
    Matousek R, Zampachova E (2011) Promising GAHC and HC12 algorithms in global optimization tasks. Optimization Methods & Software, Vol. 26, No. 3, pp. 405–419.CrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    Matousek R (2010) HC12: The Principle of CUDA Implementation. In Proceedings of 16th International Conference On Soft Computing Mendel 2010, pp. 303–308, ISBN 978‐80‐214‐4120‐0.Google Scholar
  23. 23.
    Chramcov B, Varacha P (2013) Usage of the Evolutionary Designed Neural Network for Heat Demand Forecast. In: Proceedings of Nostradamus 2012: Modern Methods of Prediction, Modeling and Analysis of Nonlinear Systems, pp. 103–122. ISBN 978-3-642-33226-5.Google Scholar
  24. 24.
    Varacha P, Jasek R (2011) ANN Synthesis for an Agglomeration Heating Power Consumption Approximation. In: Recent Researches in Automatic Control. Montreux: WSEAS Press, pp. 239–244. ISBN 978-1-61804-004-6.Google Scholar
  25. 25.
    Lampinen J, Zelinka I, (1999) New Ideas in Optimization—Mechanical Engineering Design Optimization by Differential Evolution. London: McGraw-hill, pp. 127–146, ISBN 007-709506-5.Google Scholar
  26. 26.
    Price K (1999) An Introduction to Differential Evolution. In: (D. Corne, M. Dorigo and F. Glover, eds.) New Ideas in Optimization, London: McGraw-Hill, pp. 79–108.Google Scholar
  27. 27.
    Price K, Storn R, (2001) “Differential evolution homepage”, http://www.icsi.berkeley.edu/~storn/code.html, [Accessed 01/08/2013]
  28. 28.
    Hilborn RC (2000) Chaos and Nonlinear Dynamics: An Introduction for Scientists and Engineers. Oxford University Press, ISBN: 0-19-850723-2.Google Scholar
  29. 29.
    Sprott JC (2003) Chaos and Time-Series Analysis. Oxford University Press, 2003.MATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • R. Senkerik
    • 1
  • Z. Kominkova Oplatkova
    • 1
  • M. Pluhacek
    • 1
  • I. Zelinka
    • 2
  1. 1.Department of Informatics and Artificial IntelligenceTomas Bata University in ZlinZlinCzech Republic
  2. 2.Department of Computer ScienceVŠB-Technical University of OstravaOstrava-PorubaCzech Republic

Personalised recommendations