Physical Attestation of Cyber Processes in the Smart Grid

  • Thomas Roth
  • Bruce McMillin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8328)


Cyber-physical system security must consider events in both the cyber and physical layers. This paper proves that a cyber process in the smart grid can lie about its physical behavior and remain undetected by its peers. To avoid this scenario, physical attestation is introduced as a distributed mechanism to validate the behavior of a cyber process using physical measurements. A physical attestation protocol is developed for the smart grid, and the protocol is proven to expose malicious cyber behavior. Through the use of physical attestation, the behavior of cyber processes in cyber-physical systems can be verified.


power grid information flow security remote attestation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akella, R., Meng, F., Ditch, D., McMillin, B., Crow, M.: Distributed power balancing for the FREEDM system. In: First IEEE International Conference on Smart Grid Communications, SmartGridComm, pp. 7–12 (October 2010)Google Scholar
  2. 2.
    Falliere, N., Murchu, L., Chien, E.: W32.stuxnet dossier (February 2011), (accessed April 19, 2013)
  3. 3.
    Gamage, T., McMillin, B.: Nondeducibility-based analysis of cyber-physical systems. In: Palmer, C., Shenoi, S. (eds.) Critical Infrastructure Protection III. IFIP AICT, vol. 311, pp. 169–183. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Liu, Y., Ning, P., Reiter, M.K.: False data injection attacks against state estimation in electric power grids. In: Proceedings of the 16th ACM Conference on Computer and Communications Security, CCS 2009, New York, NY, USA, pp. 21–32 (2009),
  5. 5.
    Mallela, S., Masson, G.: Diagnosable systems for intermittent faults. IEEE Transactions on Computers C-27(6), 560–566 (1978)CrossRefMathSciNetGoogle Scholar
  6. 6.
    McLaughlin, S., Podkuiko, D., McDaniel, P.: Energy theft in the advanced metering infrastructure. In: Rome, E., Bloomfield, R. (eds.) CRITIS 2009. LNCS, vol. 6027, pp. 176–187. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Pasqualetti, F., Dorfler, F., Bullo, F.: Cyber-physical attacks in power networks: Models, fundamental limitations and monitor design. In: 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC), pp. 2195–2201 (December 2011)Google Scholar
  8. 8.
    Preparata, F.P., Metze, G., Chien, R.T.: On the connection assignment problem of diagnosable systems. IEEE Transactions on Electronic Computers EC-16(6), 848–854 (1967)CrossRefGoogle Scholar
  9. 9.
    Qin, Z., Li, Q., Chuah, M.C.: Unidentifiable attacks in electric power systems. In: Proceedings of the 2012 IEEE/ACM Third International Conference on Cyber-Physical Systems, ICCPS 2012, Washington, DC, USA, pp. 193–202 (2012),
  10. 10.
    Roth, T., McMillin, B.: Breaking nondeducible attacks on the smart grid. In: Seventh CRITIS Conference on Critical Information Infrastructures Security. Springer, Lillehammer (2012)Google Scholar
  11. 11.
    Sutherland, D.: A model of information. In: Proceedings of the 9th National Computer Security Conference, pp. 175–183 (September 1986)Google Scholar
  12. 12.
    Van Cutsem, T., Ribbens-Pavella, M., Mili, L.: Bad data identification methods in power system state estimation-a comparative study. IEEE Transactions on Power Apparatus and Systems PAS-104(11), 3037–3049 (1985)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Thomas Roth
    • 1
  • Bruce McMillin
    • 1
  1. 1.Computer Science DepartmentMissouri University of Science and TechnologyRollaUSA

Personalised recommendations