Analysis of Severe Space Weather on Critical Infrastructures

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8328)


Space threats pose nontrivial issues to the safety of the population and to the correct functioning of critical infrastructures. In this paper we analyze the most significant threats posed by solar wind in terms of impact due to both direct consequences on satellite and critical infrastructure so as the subsequent domino effects. To this end we provide a model based on the CISIA platform with a case study related to the area of Rome, Italy.


Critical Infrastructures Solar Wind Satellites Space threats 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Electronic Telegram, No. 3423, Central Bureau for Astronomical Telegrams, Inter- national Astronomical Union,
  2. 2.
    Zhang, Moran. Russia Meteor 2013: Damage To Top $33 Million; Rescue, Cleanup Team Heads To Meteorite-Hit Urals, International Business Times (February 16, 2013) (retrieved February 19, 2013)Google Scholar
  3. 3.
    Permanent Subcommittee on Investigations, Committee on Governmental Affairs, U.S. Senate, Critical Infrastructure Protection: Commercial Satellite Security Should Be More Fully Addressed, Report to the Ranking Minority Member, GAO-02-781 (2002)Google Scholar
  4. 4.
    Klinkrad, H.: Space Debris. Models and Risk Analysis, Springer-Praxis (2006)Google Scholar
  5. 5.
    U.S. Dept. of Transportation, Office of Commercial Space Transportation, Hazard Analysis of Commercial Space Transportation. Technical Report of Commercial Space Transportation (1995)Google Scholar
  6. 6.
    Setola, R., Oliva, G., Gaetano, F.: Space and Ground Critical Infrastructures- State of Art. Sparc D1 (2013)Google Scholar
  7. 7.
    McMorrow, D.: Impacts of Severe Space Weather on the Electric Grid. JASON, Virginia 22102-7508 (703) (2011)Google Scholar
  8. 8.
    Gummow, A.: GIC effects on pipeline corrosion and corrosion control systems. Journal of Atmospheric and Solar-Terrestrial Physics (2012)Google Scholar
  9. 9.
    Osella, A., Favetto, A., Lopez, E.: Currents induced by geomagnetic storms on buried pipelines as a cause of corrosion. Journal of Applied Geophysics 38 (1998)Google Scholar
  10. 10.
    Curry, C.: Dependency of Communications Systems on PNT Technology, rep., ChronosTechnology, GL179PD, UK (2010)Google Scholar
  11. 11.
    Boteler, D.H.: Geomagnetic hazards to conducting networks. Natural Hazards (2003)Google Scholar
  12. 12.
    Hollman, J.A., Martí, J.R., Jatskevich, J., Srivastava, K.D.: Dynamic Islanding of Critical Infrastructures, a Suitable Strategy to Survive and Mitigate Critical Events, CNIP, Rome, March 28-29 (2006)Google Scholar
  13. 13.
    Haimes, Y., Horowitz, B., Lambert, J., Santos, J., Lian, C., Crowther, K.: Inoperability Input-Output Model for Interdependent Infrastructure Sectors. I: Theory and Methodology. Journal of Infrastructure Systems 11(2), 67–79 (2005)CrossRefGoogle Scholar
  14. 14.
    Kujawski, E.: Multi-Period Model for Disruptive Events in Interdependent Systems. Int. System Engineering 9(4), 281–295 (2006)CrossRefGoogle Scholar
  15. 15.
    De Porcellinis, S., Panzieri, S., Setola, R.: Model Critical Infrastructure via a Mixed Holistic-Reductionistic Approach. Int. J. Critical Infrastructures (IJCIS) 5, 86–99 (2009)Google Scholar
  16. 16.
    De Porcellinis, S., Panzieri, S., Setola, R., Ulivi, G.: Simulation of Heterogeneous and Interdependent Critical Infrastructures. Int. J. Critical Infrastructures (IJCIS) 4(1/2), 110–128 (2008)Google Scholar
  17. 17.
    Stangalini, M., et al.: MHD wave transmission in the Sun’s atmosphere. Astronomy & Astrophysics 534, 7 (2011)Google Scholar
  18. 18.
    Cliver, E.W., Svalgaard, L.: The 1859 Solar-Terrestrial Disturbance and the Current Limits of Extreme Space Weather Activity. Solar Physics 224(1-2), 407–422 (2004)CrossRefGoogle Scholar
  19. 19.
    Linton, D.: Stormy weather: solar activity could wreak havoc on satellites,
  20. 20.
    Mukai, K.: The Decay of ASCA’s Orbit (2001),
  21. 21.
    Marshall Space Flt. Ctr. In: MSFC Skylab Mission Report: Saturn Workshop, NASA TM X-64818, pp. 3–30 (October 1974)Google Scholar
  22. 22.
    Gurgen, P.T.: Principal Regularities in the Distribution of Major Earthquakes Relative to Solar and Lunar Tides and Other Cosmic Forces. Icarus 9, 574–592 (1968)CrossRefGoogle Scholar
  23. 23.
    Shue, J.-H., Song, P., Russell, C.T., Steinberg, J.T., Chao, J.K., Zastenke, G., Vaisberg, O.L., Kokubun, S., Singer, H.J., Detman, T.R., Kawano, H.: Magnetopause location under extreme solar wind conditions. Journal of Geophysical Research: Space Physics 103(A8), 17691–17700 (1998)CrossRefGoogle Scholar
  24. 24.
    Radasky, W.A., Kappenman, J.G.: Impacts of geomagnetic storms on EHV and UHV power grids. In: 2010 Asia-Pacific Symposium on Electromagnetic Compatibility, APEMC (2010)Google Scholar
  25. 25.
    Geomagnetic Storms Can Threaten Electric Power Grid Earth in Space. American Geophysical Union 9(7), 9–11 (1997)Google Scholar
  26. 26.
    Mintsis, G., Basbas, S., Papaioannou, P., Taxiltaris, C., Tziavos, I.N.: Applications of GPS technology in the land transportation system. European Journal of Operational Research 152(2), 399–409 (2004)CrossRefzbMATHGoogle Scholar
  27. 27.
    Pullen, S.: Providing Integrity for Satellite Navigation: Lessons Learned (Thus Far) from the Financial Collapse of 2008–2009, International Technical Meeting of the Satellite Division of The Institute of Navigation (2009)Google Scholar
  28. 28.
    D’Este, G.M., Zito, R., Taylor, M.A.P.: Using GPS to Measure Traffic System Performance. Computer-Aided Civil and Infrastructure Engineering 14(4), 255–265 (1999)CrossRefGoogle Scholar
  29. 29.
    Grant, A., Williams, P., Ward, N., Basker, S.: GPS Jamming and the Impact on Maritime Navigation. Journal of Navigation (2009)Google Scholar
  30. 30.
    Valsecchi, G., Rossi, A.: Analysis of the space debris impact risk on the International Space Station. Celestial Mechanics and Dynamical Astronomy 83(1), 63–76 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    Cliver, E.W., Svalgaard, L.: The 1859 Solar-Terrestrial Disturbance and the Current Limits of Extreme SpaceWeather Activity. Solar Physics 224(1-2), 407–422 (2004)CrossRefGoogle Scholar
  32. 32.
    Vulnerability Assessment of the Transportation Infrastructure relying on the Global Positioning System, Final Report, prepared by John A Volpe National Transportation Systems Center for Office of the Assistant Secretary for Transportation Policy, US Department of Transportation (August 29, 2001),
  33. 33.
    Adoption of a National Backup Service to GPS. United States Department of Homeland Security Press Release (February 2008)Google Scholar
  34. 34.
    Phadke, A.G.: Synchronized phasor measurements in power systems. IEEE Computer Applications in Power 6(2), 10–15 (1993)CrossRefMathSciNetGoogle Scholar
  35. 35.
    Carta, A., Locci, N., Muscas, C., Sulis, S.: A Flexible GPS-Based System for Synchronized Phasor Measurement in Electric Distribution Networks. IEEE Transactions on Instrumentation and Measurement 57(11), 2450–2456 (2008)CrossRefGoogle Scholar
  36. 36.
    Shepard, D.P., Humphreys, T.E., Fansler, A.A.: Evaluation of the Vulnerability of Phasor Measurement Units to GPS Spoofing Attacks. In: Sixth Annual IFIP WG 11.10 International Conference on Critical Infrastructure Protection Washington, March 19-21 (2012)Google Scholar
  37. 37.
    Severe Space Weather Events–Understanding Societal and Economic Impacts Workshop Report,
  38. 38.
    Understanding the Vulnerability & Building Resilience, developed by American Meteorological Society Policy Workshop Report (March 2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  1. 1.Dipartimento di Informatica e AutomazioneUniversity “Roma TRE”RomaItaly
  2. 2.Consorzio Nazionale Interuniversitario per i Trasporti e la LogistcaRomaItaly
  3. 3.University Campus Biomedico of RomeItaly

Personalised recommendations