Advertisement

An Indoor Contaminant Sensor Placement Toolbox for Critical Infrastructure Buildings

  • Demetrios G. Eliades
  • Michalis P. Michaelides
  • Marinos Christodoulou
  • Marios Kyriakou
  • Christos G. Panayiotou
  • Marios M. Polycarpou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8328)

Abstract

In this work, we address the problem of airborne contaminant sensor placement in high-risk buildings where critical infrastructures are managed and operated, making them possible locations for terrorist attacks (such as governmental buildings and ministries, utilities, airports and hospitals). A new software is presented based on the “Matlab-CONTAM Toolbox” and the CONTAM multi-zone simulation software, to construct multiple scenarios of contamination events and to solve the multi-objective sensor placement problem for minimizing the average and maximum impact risk with respect to the contaminant mass inhaled impact metric. The use of the software is demonstrated in a case-study using the Holmes’s House benchmark. The Toolbox is released under an open-source license at https://github.com/KIOS-Research/ matlab-contam-toolbox .

Keywords

Sensor Placement High-Risk Buildings Critical Infrastructure Protection Contamination MATLAB-CONTAM Toolbox 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Syverson, P.: A taxonomy of replay attacks. In: 7th Computer Security Foundations Workshop, pp. 187–191. IEEE (1994)Google Scholar
  2. 2.
    Basseville, M., Benveniste, A., Moustakides, G., Rougee, A.: Optimal sensor location for detecting changes in dynamical behavior. IEEE Transactions on Automatic Control 32(12), 1067–1075 (1987)CrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, Y., Wen, J.: Application of zonal model on indoor air sensor network design. In: Proc. of SPIE (2007)Google Scholar
  4. 4.
    Chen, Y., Wen, J.: Sensor system design for building indoor air protection. Building and Environment 43(7), 1278–1285 (2008)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Eliades, D., Michaelides, M., Panayiotou, C., Polycarpou, M.: Security-oriented sensor placement in intelligent buildings. Building and Environment 63, 114–121 (2013)CrossRefGoogle Scholar
  6. 6.
    Eliades, D., Polycarpou, M.: A fault diagnosis and security framework for water systems. IEEE Transactions on Control Systems Technology 18(6), 1254–1265 (2010)Google Scholar
  7. 7.
    European Commission: Critical infrastructure protection in the fight against terrorism. Communication, COM/2004/0702 (October 2004)Google Scholar
  8. 8.
    European Commission: Council directive 2008/114/ec of 8 december 2008 on the identification and designation of european critical infrastructures and the assessment of the need to improve their protection. Official Journal of the European Union L345(23) 12 (2008)Google Scholar
  9. 9.
    Ko, H.W.: Countermeasures against chemical/biological attacks in the built environment. Johns Hopkins APL Technical Digest 24(4), 360–367 (2003)Google Scholar
  10. 10.
    Lopez, J., Setola, R., Wolthusen, S.D.: Overview of critical information infrastructure protection. In: Lopez, J., Setola, R., Wolthusen, S.D. (eds.) Critical Infrastructure Protection. LNCS, vol. 7130, pp. 1–14. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  11. 11.
    Mead, K.R., Gressel, M.G.: Protecting building environments from airborne chemical, biological, or radiological attacks. Applied Occupational and Environmental Hygiene 17(10), 649–658 (2002); pMID: 12363204 Google Scholar
  12. 12.
    Michaelides, M., Reppa, V., Panayiotou, C., Polycarpou, M.: Contaminant event monitoring in intelligent buildings using a multi-zone formulation. In: Proc. of SAFEPROCESS, Mexico City, Mexico (2012)Google Scholar
  13. 13.
    Ostfeld, A., Uber, J.G., Salomons, E., Berry, J.W., Hart, W.E., Phillips, C.A., Watson, J.P., Dorini, G., Jonkergouw, P., Kapelan, Z., di Pierro, F., Khu, S.T., Savic, D., Eliades, D., Polycarpou, M., Ghimire, S.R., Barkdoll, B.D., Gueli, R., Huang, J.J., McBean, E.A., James, W., Krause, A., Leskovec, J., Isovitsch, S., Xu, J., Guestrin, C., VanBriesen, J., Small, M., Fischbeck, P., Preis, A., Propato, M., Piller, O., Trachtman, G.B., Wu, Z.Y., Walski, T.: The battle of the water sensor networks (BWSN): A design challenge for engineers and algorithms. ASCE Journal of Water Resources Planning and Management 134(6), 556–568 (2008)CrossRefGoogle Scholar
  14. 14.
    Schropp, D.: “smart building” technology for air safety monitoring: Sensor network design tool. Gases & Instrumentation, 24–28 (July/August 2008)Google Scholar
  15. 15.
    Toregas, C., ReVelle, C.: Optimal location under time or distance constraints. Papers in Regional Science 28(1), 131–143 (1972)CrossRefGoogle Scholar
  16. 16.
    U.S. Environmental Protection Agency (EPA): Exposure factors handbook: 2011 edition. National Center for Environmental Assessment, Washington, DC, EPA/600/R-09/052F (September 2011)Google Scholar
  17. 17.
    Walton, G., Dols, W.: CONTAM 2.4 user guide and program documentation. National Institute of Standards and Technology, Gaithersburg, MD 20899-8633, 2.4c edn., nISTIR 7251 (2005)Google Scholar
  18. 18.
    Wang, L., Dols, W., Chen, Q.: Using CFD capabilities of CONTAM 3.0 for simulating airflow and contaminant transport in and around buildings. HVAC&R Research 16(6), 749–763 (2010)CrossRefGoogle Scholar
  19. 19.
    Zhai, Z., Srebric, J., Chen, Q.: Application of CFD to predict and control chemical and biological agent dispersion in buildings. International Journal of Ventilation 2(3), 251–264 (2003)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Demetrios G. Eliades
    • 1
  • Michalis P. Michaelides
    • 1
    • 2
  • Marinos Christodoulou
    • 1
  • Marios Kyriakou
    • 1
  • Christos G. Panayiotou
    • 1
  • Marios M. Polycarpou
    • 1
  1. 1.KIOS Research Center for Intelligent Systems and Networks, and, Department of Electrical and Computer EngineeringUniversity of CyprusNicosiaCyprus
  2. 2.Department of Electrical Engineering and Information TechnologiesCyprus University of TechnologyLemesosCyprus

Personalised recommendations