Skip to main content

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 945 Accesses

Abstract

In this “postscript” a number of aspects are discussed which include how to measure success, non-spectral dimensionality techniques, and also available implementations. The chapter concludes with future research considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available online at http://bit.ly/9qtyIr (Link checked: October 2013).

  2. 2.

    Available online at http://sll.sourceforge.net (Link checked: October 2013).

References

  1. Cayton, L.: Algorithms for manifold learning. Tech. Rep. CS2008-0923, University of California San Diego (2005)

    Google Scholar 

  2. Wagstaff, K.L.: Machine learning that matters. In: Proceedings of the Twenty-Ninth International Conference on Machine Learning (ICML), pp. 529–536 (2012)

    Google Scholar 

  3. Meng, D., Leung, Y., Xu, Z.: A new quality assessment criterion for nonlinear dimensionality reduction. Neurocomputing 74(6), 941–948 (2011)

    Google Scholar 

  4. Zhang, P., Qiao, H., Zhang, B.: An improved local tangent space alignment method for manifold learning. Pattern Recognition Letters 32, 181–189 (2011)

    Google Scholar 

  5. García-Fernández, F.J., Verleysen, M., Lee, J.A., Díaz, I.: Stability comparison of dimensionality reduction techniques attending to data and parameter variations. In: Proceedings of the Eurographics Conference on Visualization (EuroViz) (2013)

    Google Scholar 

  6. Duchateau, N., Craene, M.D., Piella, G., Frangi, A.F.: Constrained manifold learning for the characterization of pathological deviations from normality. Medical Image Analysis 16, 1532–1549 (2012)

    Google Scholar 

  7. Aljabar, P., Wolz, R., Rueckert, D.: Machine learning in computer-aided diagnosis: medical imaging intelligence and analysis, chap. Manifold learning for medical image registration, segmentation, and classification. IGI Global (2012)

    Google Scholar 

  8. Tang, B., Song, T., Li, F., Deng, L.: Fault diagnosis for a wind turbine transmission system based on manifold learning and shannon wavelet support vector machine. Renewable Energy 62, 1–9 (2014)

    Google Scholar 

  9. Patwari, N., Hero III, A.O., Pacholski, A.: Manifold learning visualization of network traffic data. In: MineNet ’05: Proceedings of the 2005 ACM SIGCOMM workshop on Mining network data, pp. 191–196. ACM, New York, NY, USA (2005)

    Google Scholar 

  10. Strange, H., Zwiggelaar, R.: Parallel projections for manifold learning. In: Proceedings of the Ninth International Conference on Machine Learning and Applications, pp. 266–271 (2010)

    Google Scholar 

  11. Hinton, G., Roweis, S.: Stochastic Neighbor Embedding. In: Advances in Neural Information Processing Systems 15: Proceedings of the 2003 Conference (NIPS), pp. 833–840. MIT Press (2000)

    Google Scholar 

  12. Goldberg, Y., Ritov, Y.: Local Procrustes for manifold embedding: a measure of embedding quality and embedding algorithms. Machine Learning 77(1), 1–25 (2009)

    Google Scholar 

  13. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)

    Google Scholar 

  14. Bengio, Y.: Learning deep architectures for AI. Foundations and Trends in Machine Learning 2(1), 1–127 (2009)

    Google Scholar 

  15. Le, Q., Ranzato, M., Monga, R., Devin, M., Chen, K., Corrado, G., Dean, J., Ng, A.: Building high-level features using large scale unsupervised learning. In: International Conference in, Machine Learning, pp. 81–88 (2012)

    Google Scholar 

  16. Zhang, X.L.: Learning deep representation without parameter inference for nonlinear dimensionality reduction. ArXiv e-prints 1308.4922 (2013)

    Google Scholar 

  17. Chen, X., Zhou, D., Zhao, Q., Tan, P.: Manifold preserving edit propagation. ACM Transactions on Graphics - Proceedings of ACM SIGGRAPH, Asia 2012 31(6), 132:1–132:7 (2012)

    Google Scholar 

  18. Farbman, Z., Fattal, R., Lischinski, D.: Diffusion maps for edge-aware image editing. ACM Transactions on Graphics - Proceedings of ACM SIGGRAPH, Asia 2010 29(6), 145:1–145:10 (2010)

    Google Scholar 

  19. Williams, C.K.I., Seeger, M.: Using the Nyström method to speed up kernel machines. In: Advances in Neural Information Processing Systems 13: Proceedings of the 2001 Conference (NIPS), pp. 682–688 (2001)

    Google Scholar 

  20. van der Maaten, L., Postma, E., van den Herik, J.: Dimensionality reduction: A comparitive review. Tech. Rep. TiCC-TR 2009–005, Tilburg University (2009). Unpublished

    Google Scholar 

  21. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

    Google Scholar 

  22. Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290, 2319–2322 (2000)

    Google Scholar 

  23. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by Locally Linear Embedding. Science 290, 2323–2326 (2000)

    Google Scholar 

  24. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding and clustering. In: Advances in Neural Information Processing Systems 14: Proceedings of the 2002 Conference (NIPS), pp. 585–591 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Strange .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Strange, H., Zwiggelaar, R. (2014). Postscript. In: Open Problems in Spectral Dimensionality Reduction. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-03943-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03943-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03942-8

  • Online ISBN: 978-3-319-03943-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics