Advertisement

Introduction

  • Harry StrangeEmail author
  • Reyer Zwiggelaar
Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

A brief introduction to dimensionality reduction and manifold learning is provided and supported by a visual example. The goals of the book and its place in the literature is given, while the chapter is concluded by an outline of the remainder of the book.

Keywords

Manifold learning Spectral dimensionality reduction Medical image analysis 

References

  1. 1.
    Bellman, R.: Adaptive Control Processes: A Guided Tour. Princeton University Press (1961)Google Scholar
  2. 2.
    Scott, D.W., Thompson, J.R.: Probablitiy density estimation in higher dimensions. In: J.R. Gentle (ed.) Proceedings of the Fifteenth Symposium on the Interface, pp. 173–179 (1983)Google Scholar
  3. 3.
    Lee, J.A., Verleysen, M.: Nonlinear Dimensionality Reduction. Springer (2007)Google Scholar
  4. 4.
    Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)Google Scholar
  5. 5.
    Gashler, M., Ventura, D., Martinez, T.: Iterative non-linear dimensionality reduction by manifold sculpting. In: Advances in Neural Information Processing Systems 20: Proceedings of the 2008 Conference (NIPS) (2008)Google Scholar
  6. 6.
    Hinton, G., Roweis, S.: Stochastic Neighbor Embedding. In: Advances in Neural Information Processing Systems 15: Proceedings of the 2003 Conference (NIPS), pp. 833–840. MIT Press (2000)Google Scholar
  7. 7.
    Demartines, P., Herault, J.: Curvilinear component analysis: A self-organizing neural network for nonlinear mapping of data sets. IEEE Transactions on Neural Networks 8(1), 148–154 (1997)Google Scholar
  8. 8.
    Jansen, A., Niyogi, P.: Intrinsic spectral analysis. IEEE Transactions on Signal Processing (to appear) 61(1), 1698–1710 (2013)Google Scholar
  9. 9.
    Arif, M., Rajpoot, N.: Classification of potential nuclei in prostate histology images using shape manifold learning. In: Proceedings of the 2007 International Conference on Machine Vision, pp. 113–118 (2007)Google Scholar
  10. 10.
    Teng, L., Li, H., Fu, X., Chen, W., Shen, I.F.: Dimension reduction of microarray data based on local tangent space alignment. In: Proceedings of the 4th IEEE International Conference on Cognitive Informatics, pp. 154–159 (2005)Google Scholar
  11. 11.
    He, X., Yan, S., Hu, Y., P.Niyogi, Zhang, H.J.: Face recognition using laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(3), 328–340 (2005)Google Scholar
  12. 12.
    Park, J., Govindaraju, V., Srihari, S.N.: OCR in a hierarchical feature space. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(4), 400–407 (2000)Google Scholar
  13. 13.
    He, X., Niyogi, P.: Locality Preserving Projections. In: Advances in Neural Information Processing Systems 16: Proceedings of the 2003 Conference (NIPS), pp. 153–160. MIT Press (2003)Google Scholar
  14. 14.
    van der Maaten, L., Postma, E., van den Herik, J.: Dimensionality reduction: A comparitive review. Tech. Rep. TiCC-TR 2009–005, Tilburg University (2009). UnpublishedGoogle Scholar
  15. 15.
    Fodor, I.K.: A survery of dimension reduction techniques. Tech. Rep. UCRL-ID-148, US Department of, Energy (2002)Google Scholar
  16. 16.
    Ma, Y., Fu, Y.: Manifold Learning Theory and Applications. CRC Press (2012)Google Scholar
  17. 17.
    Mysling, P., Hauberg, S., Pedersen, K.S.: An empirical study on the performance of spectral manifold learning techniques. In: Proceedings of the 21th international conference on Artificial neural networks - Volume Part I, ICANN’11, pp. 347–354 (2011)Google Scholar
  18. 18.
    Saul, L.K., Weinberger, K.Q., Ham, J.H., Sha, F., Lee, D.D.: Semisupervised Learning, chap. Spectral Methods for Dimensionality Reduction, pp. 293–308. MIT Press, Cambridge, MA (2006)Google Scholar
  19. 19.
    Pless, R., Souvenir, R.: A survey of manifold learning for images. IPSJ Transactions on Computer Vision and Applications 1, 83–94 (2009)Google Scholar
  20. 20.
    Vlachos, M., Domeniconi, C., Gunopulos, D., Kollios, G., Koudas, N.: Non-linear dimensionality reduction techniques for classification and visualization. In: Proceedings of the eigth ACM SIGKDD Interenational Conference on Knowledge Discovery and Data Mining, pp. 645–651 (2002)Google Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceAberystwyth UniversityAberystwythUK

Personalised recommendations