Skip to main content

iALARM: An Intelligent Alert Language for Activation, Response, and Monitoring of Medical Alerts

  • Conference paper
Process Support and Knowledge Representation in Health Care (ProHealth 2013, KR4HC 2013)

Abstract

Management of alerts triggered by unexpected or hazardous changes in a patient’s state is a key task in continuous monitoring of patients. Using domain knowledge enables us to specify more sophisticated triggering patterns for alerts, based on temporal patterns detected in a stream of patient data, which include both the temporal element and significant domain knowledge, such as "rapidly increasing fever" instead of monitoring of only raw vital signals, such as "temperature higher than 39 C". In the current study, we introduce iALARM, a two-tier computational architecture, accompanied by a language for specification of intelligent alerts, which represents an additional computational [meta] level above the temporal-abstraction level. Alerts in the iALARM language consist of (a) the target population part (Who is to be monitored?); (b) a declarative part (What is the triggering pattern?), i.e., a set of time and value constraints, specifying the triggering pattern to be computed by the bottom tier; and (c) a procedural part (How should we raise the alarm? How should we continue the monitoring and follow-up?), i.e., an action or a whole plan to apply when the alert is triggered, and a list of meta-properties of the alert and action. One of our underlying principles is to avoid alert fatigue as much as possible; for instance, one can specify that a certain alert should be activated only the first time that the triggering pattern is detected, or only if it has not been raised over the past hour. Thus, we introduce a complete life cycle for alerts. Finally, we discuss the implied requirements for the knowledge- acquisition tool and for the alert monitoring and procedural application engines to support the iALARM language. We intend to evaluate our architecture in several clinical domains, within a large project for remote patient monitoring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. vom Brocke, J., Rosemann, M.: Handbook on Business Process Management-I:Introduction, Methods, and Information Systems. International Handbooks on Information Systems. Springer (2010)

    Google Scholar 

  2. Curtis, D.W., Pino, E.J., Bailey, J.M., Shih, E.I., Waterman, J., Vinterbo, S.A., Stair, T.O., Guttag, J.V., Greenes, R.A., Ohno-Machado, L.: SMART–an integrated wireless system for monitoring unattended patients. J. Am. Med. Inform. Assoc. 15(1), 44–53 (2008)

    Article  Google Scholar 

  3. Chipara, O., Brooks, C., Bhattacharya, S., Lu, C., Chamberlain, R., Roman, G.-C., Bailey, T.C.: Reliable real-time clinical monitoring using sensor network technology. In: Proceedings of AMIA (2009)

    Google Scholar 

  4. 2013 Best Medical Alert Service Comparisons and Reviews, http://medical-alert-systems-review.toptenreviews.com/

  5. Kowalczyk, L.: Patient alarms often unheard, unheeded. The Boston Globe (February 13, 2011), http://www.boston.com/lifestyle/health/articles/2011/02/13/patient_alarms_often_unheard_unheeded/

  6. Centers for Disease Control (CDC) and Prevention. National Healthcare Safety Network. Guidelines and procedures for monitoring VAP (March 2009), http://www.cdc.gov/nhsn/PDFs/pscManual/6pscVAPcurrent.pdf

  7. Rooney, Z., Nadel, S.: Optimizing intensive care management in paediatric sepsis. Curr. Opin. Infect. Dis. 22(3), 264–271 (2009)

    Article  Google Scholar 

  8. Mora, F., Passarielllo, G., Carrault, G., Le Pichon, J.P.: Intelligent patient monitoring and Management Systems: A review. IEEE Eng. Med., Biol. Mag. 12, 23–33 (1993)

    Article  Google Scholar 

  9. Shahar, Y.: A framework for knowledge-based temporal abstraction. Artificial Intelligence 90(1-2), 79–133 (1997)

    Article  MATH  Google Scholar 

  10. Boaz, D., Shahar, Y.: A distributed temporal-abstraction mediation architecture for medical databases. Artificial Intelligence in Medicine 34(1), 3–24 (2005)

    Article  Google Scholar 

  11. Spokoiny, A., Shahar, Y.: An active database architecture for knowledge-based incremental abstraction of complex concepts from continuously arriving time-oriented raw data. Journal of Intelligent Information Systems 28(3), 199–231 (2007)

    Article  Google Scholar 

  12. Hatsek, A., Shahar, Y., Taieb-Maimon, M., Shalom, E., Klimov, D., Lunenfeld, E.: A scalable architecture for incremental specification and maintenance of procedural decision-support knowledge. The Open Medical Informatics Journal 4, 255–277 (2010)

    Article  Google Scholar 

  13. Stacey, M., Mcgregor, C.: Temporal abstraction in intelligent clinical data analysis: A survey. Artificial Intelligence in Medicine 39, 1–24 (2007)

    Article  Google Scholar 

  14. Shahar, Y., Musen, M.A.: Knowledge-based temporal abstraction in clinical domains. Artificial Intelligence in Medicine 8(3), 267–298 (1996)

    Article  Google Scholar 

  15. Silvent, A.-S., Dojat, M., Garbay, C.: Multi-level temporal abstraction for medical scenario construction. Int. J. Adapt. Control 19, 377–394 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Miksch, S., Horn, W., Popow, C., Paky, F.: Utilizing temporal data abstraction for data validation and therapy planning for artificially ventilated newborn infants. Artif. Intell. Med. 8, 543–576 (1996)

    Article  Google Scholar 

  17. Combi, C., Chittaro, L.: Abstraction on clinical data sequences: an object-oriented data model and a query language based on the event calculus. Art. Intell. Med. 17, 271–301 (1999)

    Article  Google Scholar 

  18. Etzion, O.: Temporal Perspectives in Event Processing. Principles and Applications of Distributed Event-Based Systems, pp. 75–89 (2010)

    Google Scholar 

  19. Rete, F.C.: A Fast Algorithm for the Many Pattern/Many Object Pattern Match Problem. Artificial Intelligence 19, 17–37 (1982)

    Article  Google Scholar 

  20. Alferes, J., Banti, F., Brogi, A.: An event-condition-action logic programming language. In: Proc. of the 10th European Conference on Logics in Artificial Intelligence, UK (2006)

    Google Scholar 

  21. Dube, K., Wu, B., Grimson, J.B.: Using ECA Rules in Database Systems to Support Clinical Protocols. In: Hameurlain, A., Cicchetti, R., TraunmĂ¼ller, R. (eds.) DEXA 2002. LNCS, vol. 2453, pp. 226–235. Springer, Heidelberg (2002)

    Google Scholar 

  22. Greiner, U., Ramsch, J., Heller, B., Löffler, M., MĂ¼ller, R., Rahm, E.: Adaptive Guideline-based Treatment Workflows with AdaptFlow. In: Kaiser, K., Miksch, S., Tu, S.W. (eds.) Proceedings of the Symposium on Computerized Guidelines and Protocols (CGP 2004), Computer-Based Support for Clinical Guidelines and Protocols, pp. 113–117. IOS Press (2004)

    Google Scholar 

  23. Mansour, E., Wu, B., Dube, K., Li, J.: An Event-Driven Approach to Computerizing Clinical Guidelines Using XML. In: Proceedings of the IEEE Services Computing Workshops, September 18-22, pp. 13–20 (2006)

    Google Scholar 

  24. Mouttham, A., Peyton, L., Eze, B., Saddik, A.: Event-Driven Data Integration for Personal Health Monitoring. Journal of Emerging Technologies in Web Intelligence 1 (2009)

    Google Scholar 

  25. Kuperman, G.J., Bobb, A., Payne, T.H., et al.: Medication-related clinical decision support in computerized provider order entry systems: A review. J. Am. Med. Inform. Assoc. 14(1), 29–40 (2007)

    Article  Google Scholar 

  26. McCoy, A.B., Waitman, L.R., Lewis, J.B., Wright, J.A., Choma, D.P., Miller, R.A., et al.: A framework for evaluating the appropriateness of clinical decision support alerts and responses. JAMIA (2011)

    Google Scholar 

  27. Schedlebauer, A., Prasad, V., Mulvaney, C., Phansalkar, S., Stanton, W., Bates, D.W., Avery, A.J.: What evidence supports the use of computerized alerts and prompts to improve clinicians’ prescribing behavior? JAMIA 13, 531–538 (2009)

    Article  Google Scholar 

  28. Lee, E.K., Mejia, A.F., Senior, T., et al.: Improving patient safety through medical alert management: an automated decision tool to reduce alert fatigue. In: AMIA Annu. Symp. Proc., pp. 417–421 (2010)

    Google Scholar 

  29. Chakravarty, S., Shahar, Y.: A constraint-based specification of periodic patterns in time-oriented data. Annals of Mathematics and Artificial Intelligence 30(1-4) (2000)

    Google Scholar 

  30. Chakravarty, S., Shahar, Y.: Specification and detection of periodicity in clinical data. Methods of Information in Medicine 40(5), 296–306 (2001); Reprinted in: Haux, R., and Kulikowski, C. (eds.): Yearbook of Medical Informatics 2003, pp. 296–306. F.K. Schattauer and The International Medical Informatics Association, Stuttgart (2001)

    Google Scholar 

  31. Shahar, Y., Young, O., Shalom, E., Mayaffit, A., Moskovitch, R., Hessing, A., Galperin, M.: A hybrid, multiple-ontology framework for specification and retrieval of clinical guidelines. The Journal of Biomedical Informatics 37(5), 325–344 (2004)

    Article  Google Scholar 

  32. Shalom, E., Fridman, I., Shahar, Y., Hatsek, A., Lunenfeld, E.: Towards a realistic clinical-guidelines application framework: Desiderata, Applications, and lessons learned. In: Lenz, R., Miksch, S., Peleg, M., Reichert, M., Riaño, D., ten Teije, A. (eds.) ProHealth 2012 and KR4HC 2012. LNCS, vol. 7738, pp. 56–70. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  33. Hudson, D.: Design of the intensive care unit from a monitoring point of view. Respir Care V 30, 549–559 (1985)

    Google Scholar 

  34. MobiGuide: Guiding patients anytime everywhere, http://www.mobiguide-project.eu/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Klimov, D., Shahar, Y. (2013). iALARM: An Intelligent Alert Language for Activation, Response, and Monitoring of Medical Alerts. In: Riaño, D., Lenz, R., Miksch, S., Peleg, M., Reichert, M., ten Teije, A. (eds) Process Support and Knowledge Representation in Health Care. ProHealth KR4HC 2013 2013. Lecture Notes in Computer Science(), vol 8268. Springer, Cham. https://doi.org/10.1007/978-3-319-03916-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03916-9_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03915-2

  • Online ISBN: 978-3-319-03916-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics