Skip to main content

On the Ordered List Subgraph Embedding Problems

  • Conference paper
Parameterized and Exact Computation (IPEC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8246))

Included in the following conference series:

  • 886 Accesses

Abstract

In the parameterized Ordered List Subgraph Embedding problem (p-OLSE) we are given two graphs G and H, each with a linear order defined on its vertices, a function L that associates with every vertex in G a list of vertices in H, and a parameter k. The question is to decide if we can embed (one-to-one) a subgraph S of G of k vertices into H such that: (1) every vertex of S is mapped to a vertex from its associated list, (2) the linear orders inherited by S and its image under the embedding are respected, and (3) if there is an edge between two vertices in S then there is an edge between their images. If we require the subgraph S to be embedded as an induced subgraph, we obtain the Ordered List Induced Subgraph Embedding problem (p-OLISE). The p-OLSE and p-OLISE problems model various problems in Bioinformatics related to structural comparison/alignment of proteins.

We investigate the complexity of p-OLSE and p-OLISE with respect to the following structural parameters: the width Δ L of the function L (size of the largest list), and the maximum degree Δ H of H and Δ G of G. We provide tight characterizations of the classical and parameterized complexity, and approximability of the problems with respect to the structural parameters under consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alber, J., Gramm, J., Guo, J., Niedermeier, R.: Computing the similarity of two sequences with nested arc annotations. Theoretical Computer Science 312(2-3), 337–358 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42, 844–856 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ashby, C., Huang, X., Johnson, D., Kanj, I., Walker, K., Xia, G.: New algorithm for protein structure comparison and classification. BMC Genomics 14(S2:S1) (2012)

    Google Scholar 

  4. Cai, L., Chan, S.M., Chan, S.O.: Random separation: A new method for solving fixed-cardinality optimization problems. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 239–250. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Evans, P.: Algorithms and complexity for annotated sequence analysis. Technical report, Ph.D. thesis, University of Victoria (1999)

    Google Scholar 

  6. Evans, P.A.: Finding common subsequences with arcs and pseudoknots. In: Crochemore, M., Paterson, M. (eds.) CPM 1999. LNCS, vol. 1645, pp. 270–280. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  7. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Berlin (2010)

    Google Scholar 

  8. Goldman, D., Istrail, S., Papadimitriou, C.H.: Algorithmic aspects of protein structure similarity. In: FOCS, pp. 512–522 (1999)

    Google Scholar 

  9. Gramm, J., Guo, J., Niedermeier, R.: On exact and approximation algorithms for distinguishing substring selection. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003. LNCS, vol. 2751, pp. 195–209. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  10. Jiang, T., Lin, G., Ma, B., Zhang, K.: The longest common subsequence problem for arc-annotated sequences. J. Discrete Algorithms 2(2), 257–270 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kim, H.: Finding a maximum independent set in a permutation graph. Information Processing Letters 36(1), 19–23 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lin, G.-H., Chen, Z.-Z., Jiang, T., Wen, J.: The longest common subsequence problem for sequences with nested arc annotations. Journal of Computer and System Sciences 65(3), 465–480 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Naor, M., Schulman, L.J., Srinivasan, A.: Splitters and near-optimal derandomization. In: FOCS, pp. 182–191 (1995)

    Google Scholar 

  14. Schmidt, J., Siegel, A.: The spatial complexity of oblivious k-probe hash functions. SIAM Journal on Computing 19(5), 775–786 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Song, Y., Liu, C., Huang, X., Malmberg, R., Xu, Y., Cai, L.: Efficient parameterized algorithms for biopolymer structuresequence alignment. IEEE/ACM Trans. Comput. Biology Bioinform. 3(4), 423–432 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer International Publishing Switzerland

About this paper

Cite this paper

Hassan, O., Kanj, I., Lokshtanov, D., Perković, L. (2013). On the Ordered List Subgraph Embedding Problems. In: Gutin, G., Szeider, S. (eds) Parameterized and Exact Computation. IPEC 2013. Lecture Notes in Computer Science, vol 8246. Springer, Cham. https://doi.org/10.1007/978-3-319-03898-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03898-8_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03897-1

  • Online ISBN: 978-3-319-03898-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics