Advertisement

Extremal Fields

  • Sourav Chatterjee
Part of the Springer Monographs in Mathematics book series (SMM)

Abstract

This chapter introduces the notion of extremal Gaussian fields and proves superconcentration in extremal fields. The method is then used to prove superconcentration in certain kinds of spin glass models and in the discrete Gaussian free field.

Keywords

Gaussian Field Spin Glass Model Stochastic Loewner Evolution Standard Gaussian Random Variable Finite Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Bolthausen, E., Deuschel, J.-D., Giacomin, G.: Entropic repulsion and the maximum of the two-dimensional harmonic crystal. Ann. Probab. 29(4), 1670–1692 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  2. Bramson, M., Zeitouni, O.: Tightness for a family of recursion equations. Ann. Probab. 37(2), 615–653 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  3. Bramson, M., Zeitouni, O.: Tightness of the recentered maximum of the two-dimensional discrete Gaussian free field. Commun. Pure Appl. Math. 65, 1–20 (2011) CrossRefMathSciNetGoogle Scholar
  4. Bramson, M., Ding, J., Zeitouni, O.: Convergence in law of the maximum of the two-dimensional discrete Gaussian free field. Preprint (2013). Available at http://arxiv.org/abs/1301.6669
  5. Chatterjee, S.: Chaos, concentration, and multiple valleys. Preprint (2008b). Available at http://arxiv.org/abs/0810.4221
  6. Ding, J.: Exponential and double exponential tails for maximum of two-dimensional discrete Gaussian free field. Preprint (2011). Available at http://arxiv.org/abs/1105.5833
  7. Ding, J., Zeitouni, O.: Extreme values for two-dimensional discrete Gaussian free field. Preprint (2012). Available at http://arxiv.org/abs/1206.0346
  8. Gardner, E.: Spin glasses with p-spin interactions. Nucl. Phys. B 257(6), 747–765 (1985) CrossRefGoogle Scholar
  9. Giacomin, G.: Anharmonic lattices, random walks and random interfaces. Recent. Res. Dev. Stat. Phys. Transw. Res. I, 97–118 (2000) Google Scholar
  10. Gross, D., Mézard, M.: The simplest spin glass. Nucl. Phys. B 240, 431–452 (1984) CrossRefGoogle Scholar
  11. Sheffield, S.: Gaussian free fields for mathematicians. Probab. Theory Relat. Fields 139(3–4), 521–541 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  12. Talagrand, M.: The Parisi formula. Ann. Math. (2) 163(1), 221–263 (2006) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sourav Chatterjee
    • 1
  1. 1.Department of StatisticsStanford UniversityStanfordUSA

Personalised recommendations