Advertisement

Superconcentration and Chaos

  • Sourav Chatterjee
Part of the Springer Monographs in Mathematics book series (SMM)

Abstract

This chapter contains the formal definitions of superconcentration and chaos, and a theorem proving the equivalence of superconcentration and chaos. This is one of the key results of this monograph. Applications of the equivalence theorem to prove chaos in polymers, spin glasses and eigenvectors of random matrices are worked out.

Keywords

Boolean Function Ground State Energy Optimal Path Spin Glass Gaussian Random Variable 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aubrun, G.: A sharp small deviation inequality for the largest eigenvalue of a random matrix. In: Séminaire de Probabilités XXXVIII. Lecture Notes in Math., vol. 1857, pp. 320–337. Springer, Berlin (2005) Google Scholar
  2. Benjamini, I., Kalai, G., Schramm, O.: Noise sensitivity of Boolean functions and applications to percolation. Publ. Math. IHÉS 1999(90), 5–43 (2001) MathSciNetGoogle Scholar
  3. Chatterjee, S.: Chaos, concentration, and multiple valleys. Preprint (2008b). Available at http://arxiv.org/abs/0810.4221
  4. Friedgut, E.: Boolean functions with low average sensitivity depend on few coordinates. Combinatorica 18(1), 27–35 (1998) CrossRefzbMATHMathSciNetGoogle Scholar
  5. Friedgut, E.: Sharp thresholds of graph properties, and the k-sat problem. J. Am. Math. Soc. 12(4), 1017–1054 (1999). With an appendix by Jean Bourgain CrossRefzbMATHMathSciNetGoogle Scholar
  6. Friedgut, E., Kalai, G.: Every monotone graph property has a sharp threshold. Proc. Am. Math. Soc. 124(10), 2993–3002 (1996) CrossRefzbMATHMathSciNetGoogle Scholar
  7. Garban, C., Pete, G., Schramm, O.: The Fourier spectrum of critical percolation. Acta Math. 205(1), 19–104 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  8. Kahn, J., Kalai, G., Linial, N.: The influence of variables on Boolean functions. In: FOCS 1988, pp. 68–80 (1988) Google Scholar
  9. Ledoux, M.: A remark on hypercontractivity and tail inequalities for the largest eigenvalues of random matrices. In: Séminaire de Probabilités XXXVII. Lecture Notes in Math., vol. 1832, pp. 360–369. Springer, Berlin (2003) CrossRefGoogle Scholar
  10. Ledoux, M.: Deviation inequalities on largest eigenvalues. In: Geometric Aspects of Functional Analysis, pp. 167–219. Springer, Berlin (2007) CrossRefGoogle Scholar
  11. Mehta, M.L.: Random Matrices, 2nd edn. Academic Press, Boston (1991) zbMATHGoogle Scholar
  12. Mossel, E., O’Donnell, R., Servedio, R.A.: Learning juntas. In: STOC 2003, pp. 206–212 (2003) Google Scholar
  13. Mossel, E., O’Donnell, R., Oleszkiewicz, K.: Noise stability of functions with low influences: invariance and optimality. Ann. Math. (2) 171(1), 295–341 (2010) CrossRefzbMATHMathSciNetGoogle Scholar
  14. Panchenko, D., Talagrand, M.: On the overlap in the multiple spherical SK models. Ann. Probab. 35(6), 2321–2355 (2007) CrossRefzbMATHMathSciNetGoogle Scholar
  15. Talagrand, M.: On boundaries and influences. Combinatorica 17(2), 275–285 (1997) CrossRefzbMATHMathSciNetGoogle Scholar
  16. Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994a) CrossRefzbMATHMathSciNetGoogle Scholar
  17. Tracy, C.A., Widom, H.: Fredholm determinants, differential equations and matrix models. Commun. Math. Phys. 163(1), 33–72 (1994b) CrossRefzbMATHMathSciNetGoogle Scholar
  18. Tracy, C.A., Widom, H.: On orthogonal and symplectic matrix ensembles. Commun. Math. Phys. 177(3), 727–754 (1996) CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sourav Chatterjee
    • 1
  1. 1.Department of StatisticsStanford UniversityStanfordUSA

Personalised recommendations