Advertisement

Introduction

  • Sourav Chatterjee
Chapter
Part of the Springer Monographs in Mathematics book series (SMM)

Abstract

This chapter introduces the concepts of superconcentration, chaos and multiple valleys through examples. Formal definitions are given in later chapters. The examples are drawn from first-passage percolation, random polymers and the Sherrington-Kirkpatrick model of spin glasses. The concept of asymptotic essential uniqueness, introduced by David Aldous, is briefly discussed.

Keywords

Ground State Energy Spin Glass Gibbs Measure Gaussian Field Random Polymer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Adler, R.J., Taylor, J.E.: Random Fields and Geometry. Springer Monographs in Mathematics. Springer, New York (2007) zbMATHGoogle Scholar
  2. Aizenman, M., Lebowitz, J.L., Ruelle, D.: Some rigorous results on the Sherrington-Kirkpatrick spin glass model. Commun. Math. Phys. 112(1), 3–20 (1987) CrossRefzbMATHMathSciNetGoogle Scholar
  3. Aldous, D.J.: The ζ(2) limit in the random assignment problem. Random Struct. Algorithms 18(4), 381–418 (2001) CrossRefzbMATHMathSciNetGoogle Scholar
  4. Aldous, D.J., Bordenave, C., Lelarge, M.: Near-minimal spanning trees: a scaling exponent in probability models. Ann. Inst. Henri Poincaré Probab. Stat. 44(5), 962–976 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  5. Aldous, D.J., Bordenave, C., Lelarge, M.: Dynamic programming optimization over random data: the scaling exponent for near optimal solutions. SIAM J. Comput. 38(6), 2382–2410 (2009) CrossRefzbMATHMathSciNetGoogle Scholar
  6. Benaïm, M., Rossignol, R.: Exponential concentration for first passage percolation through modified Poincaré inequalities. Ann. Inst. Henri Poincaré Probab. Stat. 44(3), 544–573 (2008) CrossRefzbMATHGoogle Scholar
  7. Benjamini, I., Kalai, G., Schramm, O.: First passage percolation has sublinear distance variance. Ann. Probab. 31(4), 1970–1978 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  8. Borodin, A., Corwin, I., Ferrari, P.: Free energy fluctuations for directed polymers in random media in 1+1 dimension. Preprint (2012). Available at http://arxiv.org/abs/1204.1024
  9. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, London (2013) CrossRefGoogle Scholar
  10. Bray, A.J., Moore, M.A.: Chaotic nature of the spin-glass phase. Phys. Rev. Lett. 58(1), 57–60 (1987) CrossRefGoogle Scholar
  11. Chatterjee, S.: Chaos, concentration, and multiple valleys. Preprint (2008b). Available at http://arxiv.org/abs/0810.4221
  12. Chatterjee, S.: Disorder chaos and multiple valleys in spin glasses. Preprint (2009). Available at http://arxiv.org/abs/0907.3381
  13. Chen, L.H.Y.: An inequality for the multivariate normal distribution. J. Multivar. Anal. 12, 306–315 (1982) CrossRefzbMATHGoogle Scholar
  14. Chen, W.-K.: Disorder chaos in the Sherrington-Kirkpatrick model with external field. Preprint (2011). Available at http://arxiv.org/abs/1109.3249
  15. Chen, W.-K., Panchenko, D.: An approach to chaos in some mixed p-spin models. Preprint (2012). Available at http://arxiv.org/abs/1201.2198
  16. Chernoff, H.: A note on an inequality involving the normal distribution. Ann. Probab. 9, 533–535 (1981) CrossRefzbMATHMathSciNetGoogle Scholar
  17. da Silveira, R.A., Bouchaud, J.-P.: Temperature and disorder chaos in low dimensional directed paths. Phys. Rev. Lett. 93(1), 015901 (2004) CrossRefGoogle Scholar
  18. Deuschel, J.-D., Giacomin, G., Ioffe, D.: Large deviations and concentration properties for ∇φ interface models. Probab. Theory Relat. Fields 117(1), 49–111 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  19. Fisher, D.S., Huse, D.A.: Ordered phase of short-range Ising spin glasses. Phys. Rev. Lett. 56(15), 1601–1604 (1986) CrossRefGoogle Scholar
  20. Graham, B.T.: Sublinear variance for directed last-passage percolation. Preprint (2010). Available at http://arxiv.org/abs/0909.1352
  21. Grimmett, G.R., Kesten, H.: Percolation since saint-flour. Preprint (2012). Available at http://arxiv.org/abs/1207.0373
  22. Guerra, F.: Broken replica symmetry bounds in the mean field spin glass model. Commun. Math. Phys. 233, 1–12 (2003) CrossRefzbMATHMathSciNetGoogle Scholar
  23. Guerra, F., Toninelli, F.L.: The thermodynamic limit in mean field spin glass models. Commun. Math. Phys. 230, 71–79 (2002) CrossRefzbMATHMathSciNetGoogle Scholar
  24. Guerra, F.: Fluctuations and thermodynamic variables in mean field spin glass models. In: Albeverio, S., et al. (eds.) Stochastic Processes, Physics and Geometry. World Scientific, Singapore (1995) Google Scholar
  25. Hammersley, J.M., Welsh, D.J.A.: First-passage percolation, subadditive processes, stochastic networks, and generalized renewal theory. In: Proc. Internat. Res. Semin., Statist. Lab., Univ. California, Berkeley, Calif. Springer, New York (1965) Google Scholar
  26. Houdré, C.: Some applications of covariance identities and inequalities to functions of multivariate normal variables. J. Am. Stat. Assoc. 90(431), 965–968 (1995) zbMATHGoogle Scholar
  27. Houdré, C., Kagan, A.: Variance inequalities for functions of Gaussian variables. J. Theor. Probab. 8, 23–30 (1995) CrossRefzbMATHGoogle Scholar
  28. Huse, D.A., Henley, C.L., Fisher, D.S.: Huse, Henley and Fisher respond. Phys. Rev. Lett. 55(26), 2924 (1985) CrossRefGoogle Scholar
  29. Imbrie, J.Z., Spencer, T.: Diffusion of directed polymers in a random environment. J. Stat. Phys. 52(3–4), 609–626 (1988) CrossRefzbMATHMathSciNetGoogle Scholar
  30. Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209(2), 437–476 (2000) CrossRefzbMATHMathSciNetGoogle Scholar
  31. Kesten, H.: Aspects of first passage percolation. In: Lecture Notes in Mathematics, vol. 1180, pp. 125–264. Springer, Berlin (1986) Google Scholar
  32. Kesten, H.: On the speed of convergence in first-passage percolation. Ann. Appl. Probab. 3(2), 296–338 (1993) CrossRefzbMATHMathSciNetGoogle Scholar
  33. Krz̧akała, F., Bouchaud, J.-P.: Disorder chaos in spin glasses. Europhys. Lett. 72(3), 472–478 (2005) CrossRefGoogle Scholar
  34. Ledoux, M.: The Concentration of Measure Phenomenon. Am. Math. Soc., Providence (2001) zbMATHGoogle Scholar
  35. Mézard, M.: On the glassy nature of random directed polymers in two dimensions. J. Phys. Fr. 51, 1831–1846 (1990) CrossRefGoogle Scholar
  36. Nash, J.: Continuity of solutions of parabolic and elliptic equations. Am. J. Math. 80(4), 931–954 (1958) CrossRefzbMATHMathSciNetGoogle Scholar
  37. Newman, C.M., Piza, M.S.T.: Divergence of shape fluctuations in two dimensions. Ann. Probab. 23(3), 977–1005 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  38. Nourdin, I., Viens, F.G.: Density formula and concentration inequalities with Malliavin calculus. Electron. J. Probab. 14(78), 2287–2309 (2009) zbMATHMathSciNetGoogle Scholar
  39. Panchenko, D.: On differentiability of the Parisi formula. Electron. Commun. Probab. 13, 241–247 (2008) CrossRefzbMATHMathSciNetGoogle Scholar
  40. Panchenko, D.: The Parisi ultrametricity conjecture. Ann. Math. (2) 177(1), 383–393 (2013a) CrossRefzbMATHMathSciNetGoogle Scholar
  41. Panchenko, D.: The Sherrington-Kirkpatrick Model. Springer, Berlin (2013b) CrossRefzbMATHGoogle Scholar
  42. Parisi, G., Rizzo, T.: Phase diagram and large deviations in the free-energy of mean-field spin-glasses. Phys. Rev. B 79, 134205 (2009) CrossRefGoogle Scholar
  43. Pemantle, R., Peres, Y.: Planar first-passage percolation times are not tight. In: Probability and Phase Transition. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 420, pp. 261–264. Kluwer Academic, Dordrecht (1994) CrossRefGoogle Scholar
  44. Rizzo, T.: Chaos in mean-field spin-glass models. In: de Monvel, A.B., Bovier, A. (eds.) Spin Glasses: Statics and Dynamics. Progress in Probability, vol. 62, pp. 143–157 (2009) CrossRefGoogle Scholar
  45. Sherrington, D., Kirkpatrick, S.: Solvable model of a spin glass. Phys. Rev. Lett. 35, 1792–1796 (1975) CrossRefGoogle Scholar
  46. Talagrand, M.: Concentration of measure and isoperimetric inequalities in product spaces. Publ. Math. IHÉS 81, 73–205 (1995) CrossRefzbMATHMathSciNetGoogle Scholar
  47. Talagrand, M.: Spin Glasses: A Challenge for Mathematicians. Cavity and Mean Field Models. Springer, Berlin (2003) Google Scholar
  48. Talagrand, M.: The Parisi formula. Ann. Math. (2) 163(1), 221–263 (2006) CrossRefzbMATHMathSciNetGoogle Scholar
  49. Talagrand, M.: Mean Field Models for Spin Glasses, vol. I. Springer, Berlin (2011) CrossRefGoogle Scholar
  50. Talagrand, M.: Mean Field Models for Spin Glasses, vol. II. Springer, Berlin (2012) Google Scholar
  51. Zhang, Y.-C.: Ground state instability of a random system. Phys. Rev. Lett. 59(19), 2125–2128 (1987) CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Sourav Chatterjee
    • 1
  1. 1.Department of StatisticsStanford UniversityStanfordUSA

Personalised recommendations