Reputation-Based Mechanisms for Evolutionary Master-Worker Computing

  • Evgenia Christoforou
  • Antonio Fernández Anta
  • Chryssis Georgiou
  • Miguel A. Mosteiro
  • Angel (Anxo) Sánchez
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8304)

Abstract

We consider Internet-based Master-Worker task computing systems, such as SETI@home, where a master sends tasks to potentially unreliable workers, and the workers execute and report back the result. We model such computations using evolutionary dynamics and consider three type of workers: altruistic, malicious and rational. Altruistic workers always compute and return the correct result, malicious workers always return an incorrect result, and rational (selfish) workers decide to be truthful or to cheat, based on the strategy that increases their benefit. The goal of the master is to reach eventual correctness, that is, reach a state of the computation that always receives the correct results. To this respect, we propose a mechanism that uses reinforcement learning to induce a correct behavior to rational workers; to cope with malice we employ reputation schemes. We analyze our reputation-based mechanism modeling it as a Markov chain and we give provable guarantees under which truthful behavior can be ensured. Simulation results, obtained using parameter values that are likely to occur in practice, reveal interesting trade-offs between various metrics, parameters and reputation types, affecting cost, time of convergence to a truthful behavior and tolerance to cheaters.

Keywords

Volunteer computing evolutionary game theory reinforcement learning reputation 

References

  1. 1.
    Abraham, I., Dolev, D., Goden, R., Halpern, J.Y.: Distributed computing meets game theory: Robust mechanisms for rational secret sharing and multiparty computation. In: Proc. of PODC 2006, pp. 53–62 (2006)Google Scholar
  2. 2.
    Aiyer, A.S., Alvisi, L., Clement, A., Dahlin, M., Martin, J., Porth, C.: BAR fault tolerance for cooperative services. In: Proc. of SOSP 2005, pp. 45–58 (2005)Google Scholar
  3. 3.
    Amazon’s Mechanical Turk, https://www.mturk.com
  4. 4.
    Anderson, D.: BOINC: A system for public-resource computing and storage. In: GRID (2004)Google Scholar
  5. 5.
    Anderson, D.: Volunteer computing: the ultimate cloud. Crossroads 16(3), 7–10 (2010)CrossRefGoogle Scholar
  6. 6.
  7. 7.
  8. 8.
  9. 9.
    Bush, R.R., Mosteller, F.: Stochastic Models for Learning. Wiley (1955)Google Scholar
  10. 10.
    Christoforou, E., Fernández Anta, A., Georgiou, C., Mosteiro, M., Sánchez, A.: Applying the dynamics of evolution to achieve reliability in master-worker computing. Concurrency and Computation: Practice and Experience (2013); A preliminary version appears in Euro-Par (2012)Google Scholar
  11. 11.
    Christoforou, E., Fernandez Anta, A., Georgiou, C., Mosteiro, M.A., Sánchez, A.: Reputation-based Mechanisms for Evolutionary Master-Worker Computing. ArXiv (2013)Google Scholar
  12. 12.
    The Einstein@home project, http://einstein.phys.uwm.edu
  13. 13.
    Estrada, T., Taufer, M., Anderson, D.P.: Performance prediction and analysis of BOINC projects: An empirical study with EmBOINC. J. of Grid Computing 7(4), 537–554 (2009)CrossRefGoogle Scholar
  14. 14.
    Fernández, A., Georgiou, C., Lopez, L., Santos, A.: Reliable Internet-based computing in the presence of malicious workers. Parallel Processing Letters 22(1) (2012)Google Scholar
  15. 15.
    Fernández Anta, A., Georgiou, C., Mosteiro, M.A.: Designing mechanisms for reliable Internet-based computing. In: Proc. of NCA 2008, pp. 315–324 (2008)Google Scholar
  16. 16.
    Fernández Anta, A., Georgiou, C., Mosteiro, M.A.: Algorithmic Mechanisms for Internet-based Master-Worker Computing with Untrusted and Selfish Workers. In: IPDPS 2010 (2010)Google Scholar
  17. 17.
    Golle, P., Mironov, I.: Uncheatable distributed computations. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 425–440. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  18. 18.
    Heien, E.M., Anderson, D.P., Hagihara, K.: Computing low latency batches with unreliable workers in volunteer computing environments. J. of Grid Computing (2009)Google Scholar
  19. 19.
    Josang, A., Ismail, R., Boyd, C.: A Survey of Trust and Reputation Systems for Online Service Provision. Decision Support Systems Journal 43(2), 618–644 (2007)CrossRefGoogle Scholar
  20. 20.
    Kondo, D., Araujo, F., Malecot, P., Domingues, P., Silva, L.M., Fedak, G., Cappello, F.: Characterizing result errors in internet desktop grids. In: Kermarrec, A.-M., Bougé, L., Priol, T. (eds.) Euro-Par 2007. LNCS, vol. 4641, pp. 361–371. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  21. 21.
    Konwar, K.M., Rajasekaran, S., Shvartsman, M.M.A.A.: Robust network supercomputing with malicious processes. In: Dolev, S. (ed.) DISC 2006. LNCS, vol. 4167, pp. 474–488. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Korpela, E., Werthimer, D., Anderson, D., Cobb, J., Lebofsky, M.: SETI@home: Massively distributed computing for SETI. Computing in Science and Engineering (2001)Google Scholar
  23. 23.
    Maynard-Smith, J.: Evolution and the Theory of Games. Cambridge University Press (1982)Google Scholar
  24. 24.
    Sarmenta, L.: Sabotage-tolerance mechanisms for volunteer computing systems. Future Generation Computer Systems 18(4), 561–572 (2002)CrossRefMATHGoogle Scholar
  25. 25.
    Shneidman, J., Parkes, D.C.: Rationality and self-interest in P2P networks. In: Kaashoek, M.F., Stoica, I. (eds.) IPTPS 2003. LNCS, vol. 2735, pp. 139–148. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  26. 26.
    Sonnek, J., Chandra, A., Weissman, J.B.: Adaptive Reputation-Based Scheduling on Unreliable Distributed Infrastructures. IEEE TPDS 18(11) (2007)Google Scholar
  27. 27.
    Szepesvári, C.: Algorithms for Reinforcement Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Claypool Publishers (2010)Google Scholar
  28. 28.
    Taufer, M., Anderson, D., Cicotti, P., Brooks, C.L.: Homogeneous redundancy: a technique to ensure integrity of molecular simulation results using public computing. In: IPDPS (2005)Google Scholar
  29. 29.
    Vilaça, X., Denysyuk, O., Rodrigues, L.: Asynchrony and Collusion in the N-party BAR Transfer Problem. In: Even, G., Halldórsson, M.M. (eds.) SIROCCO 2012. LNCS, vol. 7355, pp. 183–194. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  30. 30.
    Yurkewych, M., Levine, B.N., Rosenberg, A.L.: On the cost-ineffectiveness of redundancy in commercial P2P computing. In: Proc. of CCS 2005, pp. 280–288 (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Evgenia Christoforou
    • 1
    • 2
  • Antonio Fernández Anta
    • 1
  • Chryssis Georgiou
    • 3
  • Miguel A. Mosteiro
    • 4
    • 5
  • Angel (Anxo) Sánchez
    • 2
    • 6
  1. 1.Institute IMDEA NetworksMadridSpain
  2. 2.Universidad Carlos III de MadridMadridSpain
  3. 3.University of CyprusNicosiaCyprus
  4. 4.Kean UniversityUnionUSA
  5. 5.Univ. Rey Juan CarlosMadridSpain
  6. 6.BIFI InstituteZaragozaSpain

Personalised recommendations