Mobile Byzantine Agreement on Arbitrary Network

  • Toru Sasaki
  • Yukiko Yamauchi
  • Shuji Kijima
  • Masafumi Yamashita
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8304)

Abstract

The mobile Byzantine agreement problem on general network is investigated for the first time. We first show that the problem is unsolvable on any network with the order n and the vertex connectivity d, if n ≤ 6t or d ≤ 4t, where t is an upper bound on the number of faulty processes. Assuming full synchronization and the existence of a permanently non-faulty process, we next propose two t-resilient mobile Byzantine agreement algorithms for some families of not fully connected networks. They are optimal on some networks, in the sense that they correctly work if n > 6t and d > 4t.

Keywords

agreement problem Byzantine fault distributed network distributed algorithm mobile Byzantine agreement problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Banu, N., Souissi, S., Izumi, T., Wada, K.: An improved Byzantine agreement algorithm for synchronous systems with mobile faults. Int’l J. Computer Applications 43, 21 (2011)Google Scholar
  2. 2.
    Biely, M., Hutle, M.: Consensus when all processes may be Byzantine for some time. In: Guerraoui, R., Petit, F. (eds.) SSS 2009. LNCS, vol. 5873, pp. 120–132. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Biely, M., Charron, B., Gaillard, A., Hutle, M., Schiper, A., Widder, J.: Tolerating Corrupted Communication. Swiss National Science Foundation, 200021–111701 (2007)Google Scholar
  4. 4.
    Buhrman, H., Garay, J.A., Hoepman, J.: Optimal resiliency against mobile faults. In: Proc. 25th Int’l Symp. Fault-Tolerant Computing (FTCS 1995), pp. 83–88 (1995)Google Scholar
  5. 5.
    Diestel, R.: Graph Theory. Springer (1997)Google Scholar
  6. 6.
    Dolev, D.: The Byzantine generals strike again. J. Algorithms 3, 14–30 (1982)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Dolev, D., Strong, H.R.: Authenticated algorithms for Byzantine agreement. SIAM J. Computing 12(4), 656–666 (1983)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fisher, M.J., Lynch, N.A., Paterson, M.S.: Impossibility of distributed consensus with one faulty process. J. ACM 32(2), 374–382 (1985)CrossRefGoogle Scholar
  9. 9.
    Garay, J.A.: Reaching (and maintaining) agreement in the presence of mobile faults. In: Tel, G., Vitányi, P.M.B. (eds.) WDAG 1994. LNCS, vol. 857, pp. 253–264. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  10. 10.
    Lamport, L., Shostak, R., Pease, M.: The Byzantine generals problem. ACM Trans. Programming Languages and Systems 4, 382–401 (1982)CrossRefMATHGoogle Scholar
  11. 11.
    Masuzawa, T., Tixeuil, S.: Bounding the impact of unbounded attacks in stabilization. In: Datta, A.K., Gradinariu, M. (eds.) SSS 2006. LNCS, vol. 4280, pp. 440–453. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Nesterenko, M., Rora, A.: Tolerance to unbounded Byzantine faults. In: Proc. of 21st IEEE Symposium on Reliable Distributed Systems (SRDS 2002), pp. 22–29 (2002)Google Scholar
  13. 13.
    Pease, M., Shostak, R., Lamport, L.: Reaching agreement in the presence of fault. J. ACM 27(2), 228–234 (1980)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Santoro, N., Widmayer, P.: Time is not a healer. In: Cori, R., Monien, B. (eds.) STACS 1989. LNCS, vol. 349, pp. 304–313. Springer, Heidelberg (1989)CrossRefGoogle Scholar
  15. 15.
    Schmid, U., Weiss, B., Keidar, I.: Impossibility results and lower bounds for concensus under link failures. SIAM J. Computing 38(5), 1912–1951 (2009)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2013

Authors and Affiliations

  • Toru Sasaki
    • 1
  • Yukiko Yamauchi
    • 1
  • Shuji Kijima
    • 1
  • Masafumi Yamashita
    • 1
  1. 1.Graduate School of Information Science and Electrical EngineeringKyushu UniversityNishiJapan

Personalised recommendations